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Abstract

Earth surface observation via satellite imaging is lim-
ited by data storage, downlink, and imager constraints.
Therefore, both asset management and the quality of
scientific studies can be optimized by on-board min-
imization of cloud coverage in data. Algorithms de-
scribed here plan a sequence of surface targets to im-
age which minimize cloud coverage given satellite con-
straints. The proposed algorithms build on cloud classi-
fication systems and focus on the planning problem of
finding an optimal set of surface targets which can be
imaged given mission constraints. We provide greedy
and graph search based algorithms and test them on
a dataset of 50 labeled images which have varying
amounts of clear and cloudy pixels. These planning al-
gorithms are compared to a dynamic programming op-
timal solution, and performance metrics which balance
runtimes and the amount of usable data in generated
plans are reported. The performance of the greedy and
graph search methods depends on both the fraction and
the distribution of clear pixels in the imageable domain.
A proposed adaptive grid graph search method finds 96-
100% of the mean fraction of clear pixels found by the
optimal method over the test dataset. The greedy search
results vary broadly, and its plans represent 29-100% of
the clear pixels found by the optimal method.

List of Symbols
D binary image matrix of image with clear/cloudy

classifications
Π plan consisting of image center coordinates
d distance satellite travels in along direction in single

time step
dx Maximum off-nadir looking distance in across di-

rection
dy Maximum off-nadir looking distance in along direc-

tion
h half length of sub-image in along direction
N number of sub-images in a plan
p image center point
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sx Maximum slew distance in across direction between
image centers in a plan

sy Maximum slew distance in along direction between
image centers in a plan

w half length of sub-image in across direction

x, y across and along coordinates on swath

xS fixed satellite position in across direction

yS(t) time varying satellite position in along direction

Introduction
Remote sensing of earth surface unlocks a cascade of sci-
entific exploration and engineering solutions (Chien et al.
2005), however, some of these applications are hindered by
cloud coverage (Beaumet, Verfaillie, and Charmeau 2011)
which may span approximately two-thirds (King et al. 2013)
of the Earth’s surface at a given time. For instance, cloud
coverage compromises the detection and classification of
surface elements such as ships (Yang et al. 2013), and envi-
ronmental phenomenon such as glaciers (Paul et al. 2015) at
various stages of experimentation and analysis. Further the
increasing volume of onboard imaging requires data prior-
itization schemes which can mitigate downlink and storage
limitations (Sandford et al. 2020). Therefore, autonomous
spacecraft-based remote sensing missions can increase yield
of scientifically relevant data by limiting the amount of un-
desired cloudy observations.

Due to rapid and unpredictable cloud motion, it is not
feasible to account for cloud coverage during a typical
spacecraft remote sensor’s observation planning phase. Ide-
ally clouds in a downstream swath would be identified and
planned around just minutes before an observation. This
requires planning to be performed onboard the spacecraft
(Beaumet, Verfaillie, and Charmeau 2011). However, the on-
board planning paradigm is significantly different than cur-
rent practice, which typically plans observations days in ad-
vance (Yelamanchili et al. 2019; Moy et al. 2019).

Presently, most approaches to the overall problem of data
prioritization focus on on-board cloud screening after col-
lecting observations (Sandford et al. 2020). Specifically, the
collected data is analyzed and cloudy regions are removed,
reducing the storage and downlink transmission costs. Other



approaches (He et al. 2019; Wang et al. 2020) plan obser-
vations hours or days in advance on the ground by using
cloud coverage forecasts. While these approaches likely re-
duce cloudy observations, a more optimal approach would
process actual cloud knowledge in real time.

Similar ongoing work at NASA Jet Propulsion Labora-
tory includes the Smart Ice Cloud Sensing (SMICES) small-
sat concept, a radar application that intelligently targets
storms and clouds. Despite the opposite goal of the cloud-
minimization problem, it operates in a similar manner by
picking an area inside of its view to analyze. SMICES targets
images at a rapid rate, on the order of seconds, and its plan-
ner runs as a continuous problem, and has a power constraint
of a 20% duty cycle. Furthermore, SMICES uses multiple
cloud labels to identify different targets instead of the binary
cloudy/clear labels used for the cloud avoidance problem
studied here. This gives SMICES flexibility on which tar-
gets it analyzes and allows scientists to tailor its algorithm
to target the clouds that best align with their scientific in-
terests. Here, we focus on the converse problem of avoiding
clouds, therefore do not distinguish between cloud types.

We describe a selection of onboard planning algorithms
for finding a set of surface targets that can be imaged given
instrument and vehicle constraints as well as cloud cov-
erage information. Given a swath, for which cloudiness is
known, a plan of observations within the swath is generated
and evaluated based on the resulting average cloudiness. We
develop a greedy algorithm which is limited with no look-
ahead cloud data, a grid-based graph search algorithm, and
an optimal dynamic programming algorithm.

Data source
The Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument on the Terra and Aqua satellites pro-
vides wide range multispectral data, covering the Earth’s
surface every 1 to 2 days (Platnick et al. 2003). We use
the 1km MODIS Cloud Mask product (Ackerman and et al.
2015) to determine if an area is clear or cloudy. We classify
a pixel as clear if it is flagged as “probably clear” or “confi-
dently clear”, and cloudy otherwise. The product is broken
into 5 minute swaths which typically cover 2030 or 2040
km, as shown in Figure 1. The ground sample distance in
the dataset is 1 km, and typical images are 1354 across and
either 2030 or 2040 pixels along. The fraction of clear pix-
els in the imageable domain for this dataset ranges [0.011,
0.847] with an average of 0.323, and represents a variety of
sparse and dense cases.

Methods
Problem
A plan Π = {p = (x, y) ∈ R2} is defined as a series of tar-
get points p on a swath, where each target point is the center
of a purported sub-image to be captured (Figure 1). Here, x
and y are the distances across and along an image respec-
tively. The swath is given as a binary matrix D where each
element di,j is 1 if the pixel is cloudy and 0 otherwise for the
position i in the along direction and j in the across direction.

To maximize the usability of satellite imagery, the optimiza-
tion methods described here use the fraction of clear pixels
given by a plan for a given MODIS 5-minute swath as the
objective function. We describe the usability of a plan by
the mean fraction of clear pixels (MFC) over all of its sub-
images. Plans are generated on the MODIS dataset by i) the
nadir ground track, ii) greedy search, iii) graph search, and
a iv) dynamic programming (DP) based method which pro-
vides optimal solutions. Performance is measured by com-
paring the MFC of generated plans and the benchmark DP
optimal plans. The optimization problem is summarized as
maximizing the MFC of a given input swath image, while
obeying the constraints shown in Figure 2 and described be-
low.

Constraints

Search for plans is limited by four constraints, as shown in
Figure 2. Each plan corresponds to a satellite travelling d =
200 km along the swath in a time step, while maintaining a
fixed position xS = 677 km in the across direction, for all
time t (Figure 2a). The initial along-distance of the satellite
is set to yS(t = 0) = 100 for the MODIS dataset. Each
sub-image in a plan is of size 2w + 1 across and 2h + 1
along (Figure 2b). Constraint III limits the domain of the
sub-image centers p to be dx = 350 km from nadir in the
across direction, and dy = 100 km from nadir in the along
direction (Figure 2c). Finally, in constraint IV, the maximum
slew as measured by ground distance between consecutive
sub-image centers is constrained to be at most sx = 100 in
the across direction, and at most sy = 50 in the along direc-
tion (Figure 2d). However, since the satellite moves along a
swath a distance d per time step, consecutive centers may be
a maximum distance d + sy in the along direction. There is
sufficient time to slew between observations given the corre-
sponding slew distances do not exceed (sx, sy). Therefore,
given the choice of constraint parameters described in Fig-
ure 2, and a 5-minute swath, a plan consists of N = 10
sub-images of size 21 km along and 41 km across (w = 40
km, h = 20 km).

Combined, we have the problem statement:

max
Π={(px(i),py(i))}

1

NA

N−1∑
i=0

px(i)+w∑
px(i)−w

py(i)+h∑
py(i)−h

D(x, y) (1)

Subject to,

px(0) ∈ xS ± sx (2)
py(0) ∈ yS(t = 0)± sy (3)

∀i > 0 : px(i) ∈ px(i− 1)± sx (4)
∀i > 0 : py(i) ∈ py(i− 1) + d± sy (5)
∀i > 0 : px(i) ∈ xs ± dx (6)
∀i > 0 : py(i) ∈ ys(t = ti)± dy (7)

where A = (2w+ 1)(2h+ 1) is the area of each sub-image.



(a) Greedy search (b) Graph search (c) Optimal solution

Figure 1: An example of the 1km MODIS Cloud Mask product, with plans generated from the (a) greedy, (b) graph, and (c)
optimal dynamic programming (DP) methods for a case that has ∼16% clear pixels in the imageable domain. The graph search
method is adaptive grid (AG) with bin size 40 × 40, ρ = 50, rb = 1/2, rρ = 1/2. The graph search path’s mean fraction of
clear pixels (MFC) is 94.6% of the DP solution and the two paths are nearly identical. In contrast, the greedy solution fails to
image the sparse clear areas, and its MFC is only 85.6% of the DP solution.

Optimal Implementation with Dynamic
Programming
Note that Eq (1) trivially satisfies optimal substructure and
overlapping subproblems criteria due to the independent
sums. To see this, note that we sum over nearby pixels many
times as the point p and its neighbors are evaluated, and
that any choice of a given p(i) implies that the sub-path
p(0)...p(i−1) is independently optimal (otherwise we could
find a better path p(0)...p(i − 1) to reach p(i)). Thus, it is
amenable to a dynamic programming solution, which we
outline here.

Note, that the dynamic programming solution, when im-
plemented single-threaded (for fair comparison and in a
space-like computing environment), even though it exhibits
good cache localization, is quite slow compared to the adap-
tive algorithms discussed. For our purposes, it only matters
that it produces the optimal results, for baseline comparison
of the algorithms proposed. An optimized and parallelized
implementation of this algorithm will be presented and ana-
lyzed separately when considering a hypothetical multi-core
processor for spaceflight.

Greedy algorithm
The greedy method steps forward through time and discov-
ers a plan by searching over the area of imageable centers at
each time step t. The center pt associated with the clearest
sub-image at time t is added to the plan, and the imageable
search area for the next time step t + 1 is calculated based
on the location of pt. Therefore, the greedy selection of pt

Algorithm 1: Dynamic Programming Solution
input : zero-padded matrix D
output: Target points p of a plan Π with N

observations.
1 for each pixel, x, y in D do
2 V(x, y)← sumAroundw,h(D, x, y)
3 V(x, y)←

V(x, y) + maxAroundsx,sy (D, x, y − d)
4 end
5 p(N)← argMaxArounddx,dy (V, xS , yS(t =

0) + d ·N)
6 for i← N − 1 to 0 do
7 p(i)←

argMaxAroundsx,sy (V, p(i+ 1)− (0, d))
8 Print (p(i))
9 end

limits the search area for subsequent sub-image centers. This
greedy strategy is described in Algorithm 2 where the rou-
tine is initialized with the furthest planning distance along a
MODIS image dmax = 2000. In each iteration of the greedy
search in Algorithm 2, the window W of imageable centers
p, is found based on the constraint parameters and the satel-
lite position. Next, each pixel in W is allowed to be a can-
didate point p for the plan Π, and the cloudiness about these
points is calculated for a sub-image of size 2w+ 1×2h+ 1.
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single time step is constant
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(b) Constraint II: the dimensions of a single sub-image are 2w + 1 ×
2h+ 1.
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(c) Constraint III: the satellite can scan up to a distance away from
nadir in both directions.

Acro
ssAlong

<latexit sha1_base64="Iz9R73NCc90mtjLZOOiA1LyXsL0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoseCF48t2FZpQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqPqAaBZfYMtwIvE8U0igQ2AnGNzO/84RK81jemUmCfkSHkoecUWOl5kO/XHFr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+xmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S9nnNu6y5zYtKvZrHUYQTOIUqeHAFdbiFBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPsL2Mxw==</latexit>

Y

<latexit sha1_base64="69jRDpzYor8jF6jmeKP8QloW17c=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIoseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip2R2UK27NXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasJbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqx51zW3eVWpV/M4inAG51AFD26gDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBrzmMxg==</latexit>

X Satellite travel 
direction

<latexit sha1_base64="AsHJ5ZlcufYn3pd6K80O1Pzq+/w=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBZBEEoioh4LXjxWMG2hDWWz2bRLdzdhdyOE0N/gxYMiXv1B3vw3btsctPXBwOO9GWbmhSln2rjut1NZW9/Y3Kpu13Z29/YP6odHHZ1kilCfJDxRvRBrypmkvmGG016qKBYhp91wcjfzu09UaZbIR5OnNBB4JFnMCDZW8qMLPcyH9YbbdOdAq8QrSQNKtIf1r0GUkExQaQjHWvc9NzVBgZVhhNNpbZBpmmIywSPat1RiQXVQzI+dojOrRChOlC1p0Fz9PVFgoXUuQtspsBnrZW8m/uf1MxPfBgWTaWaoJItFccaRSdDscxQxRYnhuSWYKGZvRWSMFSbG5lOzIXjLL6+SzmXTu266D1eNllvGUYUTOIVz8OAGWnAPbfCBAINneIU3RzovzrvzsWitOOXMMfyB8/kDkhyOeQ==</latexit>

d + sy

<latexit sha1_base64="chqwd7bP1Cy0XDA1fVReLWewXgo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2ile9N/6pcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVa9Wde8uK3U3j6MIJ3AK5+DBFdThFhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP2vqjdU=</latexit>sx

(d) Constraint IV: satellite slewing between consecutive sub-images is
constrained.

Figure 2: The surface target planning problem has four constraints.

The set of least cloudy candidate points in W is found, and
the one with the smallestL1 (Manhattan) distance to the pre-
vious point in the plan is selected.

Graph search algorithm

Graph search methods discretize a swath into a grid of
nodes which summarize the cloudiness in their neighbor-
hood, and edges between nodes indicate a valid sequence
of sub-images given the set of satellite imager constraints
Θ. The nodes represent sub-image centers p of a plan Π.
The incoming edges of a node carry a weight equal to the
cloudiness in a sub-image centered at the node. Constraints
I (Figure 2a) and III (Figure 2c) are used to divide the
grid of nodes into sets such that each set has all the nodes
which the satellite can scan at a given time step. Specifi-
cally, nodes are divided into sets St = {(x, y) ∈ R2 : x ∈
[xS(t)−dx, xS(t)+dx], y ∈ [yS(t)−dy, yS(t)+dy]} for a
given time step t by the domain constraint distances dx and
dy , where xS(t) and yS(t) give the position of the satellite
at time t. For instance, the first set of nodes So is comprised
of nodes imageable at the satellite’s original position, and
the final set of nodes Sf is all the nodes imageable at the
satellite’s final position. Edges only connect nodes from a
given set to the subsequent one, and this results in a directed
acyclic graph (DAG) which is topologically sorted. Further-
more, constraint IV (Figure 2d) is enforced when discov-

ering edges between nodes. Consequently, a viable plan is
given by a path on the graph which connects a node from
So to a node in the final set Sf at the end of the swath.
Therefore, the shortest viable path on the graph represents a
sequence of sub-image centers which minimizes cloud cov-
erage. MFC of a plan is computed by averaging the weight
of edges in the shortest distance path.

Modulating the density and placement of nodes in a grid
allows for a higher or lower fidelity representation of the
original swath and also controls the computational perfor-
mance of the graph search routine. To explore these trade-
offs in performance, we study three types of grids, i) fixed
grids (FG) which place nodes on a rectangular lattice of fixed
density (e.g. Figure 3a), ii) mixed grids (MG) which increase
density of nodes in heterogeneous sections of the swath and
reduce node density in homogeneous areas which are char-
acterized by a majority of clear or cloudy pixels (e.g. Figure
3b), and iii) adaptive grids (AG) which iteratively improve
the plan by placing more nodes in a narrow window around
the previous plan’s sub-image centers (e.g. Figure 3c-3d).

Algorithm 3 describes the routine for finding a plan us-
ing fixed grids. A FG is defined by bin sizes Bx and By
which are spacing between nodes in the across and along di-
rections, respectively. Thus, only two hyper-parameters are
required beyond the standard constraint parameters for the
FG method. On the other hand, the MG method allows for



(a) FG: 969 nodes. Bin sizes
Bx = By = 40.

(b) MG: 2649 nodes. Bin sizes
Bx = By = 40 and bx = by =
20.

(c) AG, iteration #2: 312 nodes.
Bin sizes Bx = By = 20, ρ =
50.

(d) AG, iteration #3: 324 nodes.
Bin sizes Bx = By = 10, ρ =
25.

Figure 3: Examples of the grids generated on the same swath using a (a) fixed grid, (b) mixed grid, and (c)-(d) the second and
third iterations of an adaptive grid where the first iteration uses a bin sizes Bx = By = 40. The fraction of clear pixels in
domain for this image is 0.460.

Algorithm 2: Greedy algorithm for minimizing
cloud coverage in satellite imagery

output: Plan Π = {p = (x, y) ∈ R2} of sub-image
centers which minimize cloud coverage

input : Satellite image swath data matrix D, imager
constraint parameters Θ, dmax maximum
distance to search along image

1 Π = ∅
2 t = 0
3 while True do
4 W : (xmin, xmax, ymin, ymax)←

getWindow(Θ, yS(t)) // candidate
points p across and along limits

5 if ymax ≥ dmax then
6 break;
7 else
8 C ∈ R2 ← getCloudiness(W , D, Θ)

// total cloudy pixels in
sub-image centered at each
candidate point p in W

9 pt ← closestLeastCloudyPoint(C, pt−1)
// point with least cloudy
sub-image that has smallest L1

distance to previous sub-image
center

10 Π← Π ∪ pt // add point to plan
11 t = t+ 1 // increment time step

12 end
13 end
14 return Π

more control over the placement of nodes but requires more
hyper-parameters. A MG uses Bx and By to divide the im-
age into bins, and computes the MFC in each of these. If
the bin clarity is within an intermediate range [cmin, cmax],
then the bin is categorized as heterogeneous because it con-
tains a mixture of both clear and cloudy pixels whose place-
ment an optimal search may require the knowledge of. These
heterogeneous bins are divided into smaller bins of size bx
across and by along. Furthermore, the same heterogeneity
range of clarity [cmin, cmax] is not suitable for all input im-
ages. Therefore, the actual MFC for the entire domain of an
image is computed to separate sparse and dense cases (line
1 in Algorithm 3). In practice, better plans are found by us-
ing cmin is orders of magnitude smaller for images with a
low domain MFC. Therefore, the two sets of bin sizes, two
sets of clarity ranges, and a threshold for domain MFC are
required as hyper-parameters for the MG method.

Adaptive grids are defined by bin sizes Bx and By which
are reduced by a ratio of rb per iteration. During each of
these iterations, a new grid is created by placing nodes
around each of the current plan’s sub-image centers p. The
grid nodes around each p must be no further than ρ in ei-
ther the across or along directions. This grid span distance
ρ is also reduced in each iteration by a ratio rρ. Figures 3c
and 3d show two iterations of an adaptive grid where the
bin size and grid span reduction ratios are rb = 1/2 and
rρ = 1/2 respectively. Note that the grid nodes must still
obey constraints I and III, therefore a different number of
nodes may exist at each time step. Additionally, two stop-
ping criteria parameters are required i) ε which is the min-
imum improvement in MFC required to continue iterating,
and ii) ρmin which is the smallest grid span allowed. A new
plan is accepted as long as the change in MFC (∆MFC) does
not decrease, which may occur if new grid points omit pre-



Algorithm 3: Fixed or mixed grid graph search al-
gorithm for minimizing cloud coverage in satellite
imagery

output: Plan Π = {p = (x, y) ∈ R2} of sub-image
centers which minimize cloud coverage

input : Satellite image swath data matrix D, imager
constraint parameters Θ, dmax maximum
distance to search along image, H grid
generation hyper-parameters

1 MFCdomain ← getDomainMFC // only if MG
2 N = dmax/(2dy) // number of sub-images

in plan
3 L← getNodeSetLimits(Θ, N) // limits of

node sets S
4 S ← getNodeSets(D, L, H , Θ) // grid of

nodes separated into sets S
5 G← discoverEdges(S, Θ) // find allowed

edges and make DAG
6 Π← shortestDistance(G, Θ) // get plan by

finding the shortest viable path in G
7 return Π

viously detected optimal regions. If a new plan’s MFC is
worse than the best plan’s MFC, then the new plan is rejected
and another iteration is forced to plan around the same plan
again but with smaller bin sizes and grid span. Therefore,
the MFC of a plan monotonically increases with iterations
of the adaptive grid scheme given in Algorithm 4. The ini-
tial plan is found by placing nodes around a nadir ground
track plan ΠN with a grid span of ρ = ∞. For bin size
Bx = By = B andN sub-images, the number of nodes pro-
cessed in an iteration i of the adaptive method is of the order
O(4Nρ2(rρ/rb)

2i/B2), therefore when rρ = rb the number
of nodes processed per iteration remains approximately con-
stant, as is the case in Figure 3c-3d where rρ = rb = 1/2.

Results
Examples of plans are shown in Figure 1, where all three
methods find plans with MFC far greater than the domain
MFC of 0.16. Performance of algorithms is not only dictated
by the domain MFC, but also the distribution of clear pixels.
Particularly, cases with large and contiguous areas of mod-
erate to high clarity are easiest to plan. Therefore the greedy
solution is a natural approach to discovering the least cloudy
areas of a swath in scenarios where there is either very low
cloud coverage or an even distribution of clear areas. The
relationship between MFC found by a plan and the MFC in
domain is shown in Figure 4a where an exponential model
is fit to the MFC found by optimal, greedy, and AG graph
search methods. Figure 4b shows that the graph search per-
forms well for both sparse and dense cases which have very
low and high MFC in domain respectively. It is the interme-
diate range of clarity (MFC in domain = [0.2, 0.5]) which
leads to bigger differences between the graph search and the
optimal plans. In contrast, the greedy method’s differences
from the optimal plans are less correlated with MFC in do-

Algorithm 4: Adaptive grid graph search algorithm
for minimizing cloud coverage in satellite imagery

output: Plan Π = {p = (x, y) ∈ R2} of sub-image
centers which minimize cloud coverage

input : Satellite image swath data matrix D, imager
constraint parameters Θ, dmax maximum
distance to search along image, H grid
generation hyper-parameters

1 N = dmax/(2dy) // number of sub-images
in plan

2 L← getNodeSetLimits(Θ, N) // limits of
node sets S

3 Πbest ← getInitialPlan(ρ =∞, ΠN , L)
// initial plan

4 while ρ > ρmin & ∆MFC> ε do
5 S ← getNodeSetsAroundPlan(D, L, ρ, Bx, By ,

Πbest) // grid of nodes around
current plan centers p, separated
into sets S

6 G← discoverEdges(S, Θ) // find allowed
edges and make DAG

7 Πi ← shortestDistance(G, Θ) // get new
plan by finding the shortest viable
path in G

8 if ∆MFC < 0 then
9 ∆MFC=∞ // reject new plan and

force next iteration with same
plan

10 else
11 Πbest = Πi // accept new plan
12 end
13 (Bx, By) = rb · (Bx, By) // reduce bin

size
14 ρ = rρρ // reduce grid span

15 end
16 return Π

main (Figure 4b).
In addition to optimal, greedy, and nadir results, the FG

graph search is run with four different square bin sizesBx =
By = 10, 20, 30, 40. Two MG graph search cases are run
by mixing large square bins of size Bx = By = 40 with
smaller square bins of size bx = by = 20, and bins of size
B = 30 with small bins of size b = 10. Finally three AG
graph searches are performed using square bins of initial size
Bx = By = 20, 30, 40, and ρ = 50, rb = 1/2, rρ = 1/2.
Table 1 and Figure 5 show two main metrics which include
i) runtime and ii) percentage of the optimal MFC found over
the 50-image dataset.

The graph search results offer greater MFC in exchange
for runtime when bin sizes are reduced. For instance the FG
10×10 case has the highest MFC values of all FG cases, but
is an order of magnitude slower than even the FG 20×20
simulations. To alleviate these extremes, the results of the
MG simulations lie between results of FG cases with bin
size B and FG cases with bin size b, but the MG method re-



quires careful tuning of hyper-parameters which define het-
erogeneous areas of the swath. In comparison to the other
techniques, the AG graph search simulations yield higher
median MFC over the dataset in less runtime. Specifically,
the AG 20 × 20 case has the highest minimum (96%) and
median (99.6%) percent of the optimal MFC (Table 1 in
roughly fourth of the time of the FG 10× 10 method.

Future work
The utility of algorithms described here can be expanded by
by additional constraints which make the observation plan-
ning problem more realistic. For instance, spacecraft energy
and data storage constraints could alter number of observa-
tions. Further, the slew model can be modified to better ad-
dress slew angle constraints and varying degrees of agility in
the across and along tracks. Imager performance limitations
can be better incorporated by using a utility map which dis-
counts the value of observations that are further from nadir.
Rewards for observations in areas of high interest may be
used to increase the overall value of a plan. The current plans
require observations at a constant cadence, which could be
generalized to non-constant intervals and multiple observa-
tions of the same target area. As a part of ongoing work, the
algorithms provided in this work are being ported to flight
hardware to study mission applicability, and are being gen-
eralized to broader application scenarios by the modular ad-
dition of aforementioned constraints and utility maps.
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Figure 4: Performance of surface target planning algorithms over the 50-image MODIS dataset compared to MFC in domain.
The AG algorithms use ρ = 50, rρ = 1/2, and rb = 1/2.
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Figure 5: Performance of surface target planning algorithms over the 50-image MODIS dataset measured by runtimes (5a) and
MFC compared to optimal solution (5b). The AG algorithms use ρ = 50, rρ = 1/2, and rb = 1/2.



Table 1: Median performance metrics over the 50-image dataset. % improvement is relative to the greedy method

Method Median MFC Median slew
across (km)

Median slew
along (km)

Max runtime
(s)

Min % of opti-
mal MFC

Median % of
optimal MFC

AG 20x20 0.803 659 308 2.0E+00 96.0 99.6
AG 30x30 0.800 634 299 7.2E-01 91.4 99.5
AG 40x40 0.793 616 298 2.5E-01 91.5 98.9
MG 10x10 &
30x30

0.799 650 290 6.0E+00 91.2 97.7

MG 20x20 &
40x40

0.753 640 260 4.7E-01 84.9 94.2

FG 10x10 0.805 660 310 8.6E+00 94.0 98.9
FG 20x20 0.769 650 280 6.1E-01 84.9 95.2
FG 30x30 0.740 645 325 2.0E-01 79.9 91.9
FG 40x40 0.702 570 260 8.3E-02 61.5 88.1
Greedy 0.686 505 247 1.6E+00 29.4 90.1
Nadir 0.293 0 0 1.7E-02 0.1 38.2
DP optimal 0.809 657 306.5 - - -


