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Abstract

Plan execution in unknown environments poses a number of
challenges: uncertainty in domain modeling, stochasticity at
execution time, and the presence of exogenous events. These
challenges motivate an integrated approach to planning and
execution that is able to respond intelligently to variation.
We examine this problem in the context of the Europa Lan-
der mission concept, and propose a planning and execution
framework that responds to feedback and task failure using
two techniques: flexible execution and replanning with plan
optimization. We develop a theoretical framework to predict
the value of each of these techniques, and we compare these
predictions to empirical results generated in simulation. We
demonstrate that an integrated approach to planning and exe-
cution that is grounded in flexible execution, replanning, and
utility maximization will be an enabling technology for future
tightly-constrained planetary surface missions.

Introduction
When integrating AI planning into robotic applications,
planners are consistently challenged by variation in execu-
tion and uncertainty in the quality of our environment mod-
els. In space-based applications, this is especially challeng-
ing because the environment is largely unknown, reducing
the quality of our a priori models of the world. To address
these problems, we describe an integrated approach to plan-
ning and execution in an unknown, unpredictable environ-
ment. First, we define a theoretical framework to examine
the value of two integrated planning and execution tech-
niques: flexible execution and replanning with plan opti-
mization. We discuss this framework in the context of the
Europa Lander mission concept. Finally, we compare the
predictions of the model to empirical results in a Europa-
like simulation environment.

The primary empirical context of our model is a mission
concept to perform in situ analysis of samples from the sur-
face of the Jovian moon Europa (Hand 2017). Unlike prior
NASA missions, a priori domain knowledge is severely lim-
ited and uncertain, and communication with Earth is limited
by long blackout periods (about 42 hours out of every 84
hours). Consequently, a successful mission requires a plan-
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ning and execution framework that is highly efficient1 , ro-
bust to unprecedented levels of uncertainty, and still capa-
ble of maximizing its overall utility. On the other hand, the
Europa Lander concept has a fairly rigid definition of what
actions the lander must perform in order to produce util-
ity. Our planning algorithm leverages this domain-specific
knowledge by making use of a hierarchical task network
(HTN) and using heuristic-guided search to examine various
task combinations to maximize utility. The ultimate goal for
a Europa Lander would be to analyze surface material and
communicate the resulting data products back to Earth. To
reward accomplishment of these goals, we assign utility to
tasks such as sample excavation and seismographic data col-
lection, but do not receive this utility until the lander com-
municates the data down to Earth. In the HTN framework,
this means that tasks in a hierarchy produce utility only if
the full hierarchy is executed.

For our empirical evaluation, we base our planning system
on MEXEC, an integrated planner and executive first built
for NASA’s Europa Clipper mission (Verma et al. 2017). We
compare four approaches to planning on the Europa Lan-
der problem similar to those used in prior missions: a static
plan without failure recovery mechanisms, a static plan with
ground input for failure recovery (Gaines et al. 2016), flex-
ible execution without replanning, and flexible execution
with replanning (Rabideau and Benowitz 2017). We explore
the value of flexible execution and replanning with plan op-
timization, and examine these techniques’ effects on utility
in these scenarios. We demonstrate that, true to our model’s
prediction, each technique shows significant improvement in
utility achievement in the Europa Lander domain.

Domain Description
The primary goal of the Europa Lander mission concept is
to excavate and sample the surface, analyze the sampled
material for signs of biosignatures, and communicate that

1As a point of reference, the RAD750 processor used by the
Mars 2020 rover has measured performance in the 200-300 MIPS
range. In comparison, a 2016 Intel Core i7 measured over 300,000
MIPS, or over 1000 times faster. Furthermore, the Mars 2020 on-
board scheduler (Agrawal et al. 2019) is only allocated a portion of
the computing cycles onboard the RAD750 resulting computation
several thousand times slower than a typical laptop.



Figure 1: A task network for the Europa Lander mission concept. The diagram represents a potential execution trace of the
mission that would fulfill baseline requirements.

data back to Earth (Hand 2017). Additionally, there are sec-
ondary objectives to take panoramic imagery of the Europan
surface and collect seismographic data. Lander operations
are generally limited to the accomplishment of these two
overarching goals. This provides significant structure to the
problem, since the concept mission clearly defines the se-
quence of actions required to achieve these goals. Figure 1
displays the strong dependency structure inherent to the Eu-
ropa Lander concept mission. In order to sample, the lander
needs to have excavated a trench; in order to analyze, the
lander needs to have collected a sample; etc.

As a minimum requirement, the lander should excavate
a trench in the Europan surface, collect three samples from
that site, analyze those samples, and return that data to Earth.
The basic requirements of a mission would require only a
single site to be excavated. However, there is value in exca-
vating additional sites, because the material at different sites
may possess different properties. On the other hand, the lan-
der may choose to resample the same location, for exam-
ple, in order to verify the discovery of a biosignature. In the
baseline mission concept, all three of the lander’s samples
are chosen from the same target. Note that after the first site
is excavated, no further excavations are needed to sample
from that trench; all three sampling activities can share a sin-
gle excavation site. After excavation and sample collection,
samples must be transferred into scientific instruments that
analyze the material and produce data products. Then, for
a mission to achieve any actual utility, those data products
must be communicated back to Earth.

In addition to sampling tasks, the lander may engage
in seismographic data collection and period panoramic im-
agery tasks. These are considered lesser goals, with lower
utility associated with their completion. As such, the data
products that these tasks generate are considered to have

lower value. However, these tasks also involve no surface
interaction, and have less uncertainty associated with them
as a result.

It is important to note that utility is only achieved when
data is downlinked back to Earth. This is true for both the
sampling and seismograph/panorama tasks. Some excava-
tion sites or sampling targets may provide more utility than
others if, for example, one of those targets has a positive
biosignature and the other does not. However, regardless of
the quality of the material that the lander samples, no util-
ity is achieved unless that data is communicated. This dy-
namic means that while potential utility is generated during
the sampling and analysis phases, it is only realized by com-
pleting relevant communication tasks.

The Europa Lander mission concept is also constrained
by a finite battery that cannot be recharged. Battery life is
a depletable resource, and the lander must use its energy as
efficiently as possible. Each task saps energy from the bat-
tery, and our algorithm must plan accordingly to maximize
utility in face of this constraint. In addition to this challenge,
the surface characteristics of Europa are uncertain, and any
prior mission model that is generated before landing is sure
to have inaccuracies. In particular, the energy consumption
of the excavation and sample collection tasks is largely un-
known. There is also significant variation in the utility of
any given sample, since the value of sampling a given target
on Europa depends on whether the material is scientifically
interesting, e.g. whether a biosignature is present.

Approach
We design our planning system to respond intelligently to
stochasticity at execution time, since we expect this to be a
significant factor in our domain. Planning and execution are
integrated in our approach, in order to respond to variation



and therefore better optimize overall utility achieved. We
achieve this integration through the use of two techniques:
flexible execution and replanning with plan optimization.

Flexible Execution
Flexible execution is a lightweight rescheduling algorithm
that runs at a much higher cadence than the planner. This
algorithm has two main properties: (1) it is significantly less
costly than replanning, and (2) it is significantly less power-
ful than replanning. Despite its limited scope, flexible exe-
cution is valuable because it can be run so frequently. This
allows the system to handle less-severe unexpected events
without incurring the cost of replanning. Previous NASA
missions have made heavy use of flexible execution, such
as the Mars 2020 Perseverance rover (Chi et al. 2018). Our
implementation differs in focus, emphasizing responses to
adverse events.

In our system, flexible execution consists of two major
components. The first is task push. If a task’s preconditions
are not met, before failing the task, we allow it to wait for
some amount of time for this inconsistency to resolve. Such
a situation might occur, for example, if previous dependen-
cies are unexpectedly delayed. We then push the start time
of the task forward in the plan. Task push is implemented
as a callback that is run before a task is dispatched to the
execution system. The executive checks the task’s precon-
ditions and delays dispatch until either the conditions have
been met, or the task’s wait timeout has been exceeded.

The second component of flexible execution is automated
retry. After a task completes with a failure code, flexible ex-
ecution can immediately re-schedule the task if its precondi-
tions are still met. The plan is then updated to account for the
new predicted end time of the task, as well as its additional
resource usage. Here, the system short-circuits a simple fail-
ure response, avoiding planning costs for failures whenever
possible.

In the context of the Europa Lander domain, flexible exe-
cution offers significant value despite its simplicity. Because
significant noise is expected in resource impacts, providing
a low-cost method of handling mismatches in resource use
predictions often avoids costs associated with either replan-
ning or waiting for ground input. For example, if heating a
joint on the lander is slower than predicted, flexible execu-
tion may handle this by re-triggering the heating operation
or delaying arm movement, either of which would be suffi-
cient to resolve the issue.

Replanning with Plan Optimization
For more complex failure responses, simple retries may be
insufficient. In these cases, we turn to replanning during ex-
ecution. Replanning allows the system to make use of on-
line state updates, responding to variation from the origi-
nal plan’s predictions. Our framework measures the value
of each resource being modeled, and assigns that value to
the given resource in the planning model. Then, when re-
planning, the planner uses the actual, measured value of the
state, rather than the previous predicted value. This allows
the system to update its goals according to what is realisti-
cally possible given the current state measurements of the

system. When tasks fail, their predicted state impacts are
usually not realized. Replanning provides a mechanism to
respond to these problems in a more complex manner than
retrying the task. For example, excavation of the Europan
surface is a complicated task with many modes of failure.
Retries or delays may be insufficient responses to these fail-
ure modes, which may require additional actions to be taken.

In addition to this, replanning allows the system to make
use of additional knowledge gained at execution time. This
may take the form of task model updates and utility ad-
justments. For example, during execution time, the lander
may discover that a task consumes more energy than ex-
pected, or that it produces more valuable data than expected.
In the Europa Lander domain, the system might discover a
biosignature at a sampling location, which would drastically
change the site’s utility. This is where plan optimization
comes into play. By updating the task models, replanning
can take execution-time knowledge into account and gen-
erate plans that produce more utility. Replanning thus im-
proves overall utility achievement through two mechanisms:
more advanced failure recovery, and plan optimization given
execution-time knowledge.

Theoretical Framework
We define our planning problem as follows. We provide our
planner with a set of tasks T = {t0, t1, ..., tn}. Each task is
represented by a tuple tk = {ck, uk, dk, P, I} where:

• ck represents the task’s cost.
• uk represents the task’s utility.
• dk represents the task’s nominal duration.
• P is the set of the task’s preconditions. These may be

based on resource values, or on the execution state of de-
pendency tasks.

• I is the set of its impacts on resource timelines.

This matches the timeline representation of execution state
used by (Verma et al. 2017). For our problem, we assume
that we have a fixed cost budget b. In the Europa Lander
domain, this budget represents the non-rechargeable battery,
with each task using up some amount of that battery’s en-
ergy. We wish to maximize utility by scheduling tasks sub-
ject to the following constraints:
• For all tasks, all preconditions are valid.
• For all tasks, all impacts are valid.
• The sum of all task costs does not exceed b.
In our framework, we examine four planning and execution
strategies: static, ground, FE, and replan. Using the static
strategy, a plan is generated before execution time, then ex-
ecuted without change. No failure responses are enabled,
so any task failure results in the termination of plan exe-
cution. In the ground strategy, we introduce a mechanism
for failure resolution: waiting for ground input. We assume
that ground input is able to resolve all failures. The plan is
still pre-generated, but task failures can be handled without
termination of execution, albeit in a costly manner. In the
FE strategy, we allow flexible execution of our plans, which



provides another failure resolution mechanism. Flexible ex-
ecution is less costly, but is able to handle only a fraction of
possible failures, with all other failures handled by waiting
for ground input. Finally, in the replan strategy, we allow for
modification of the plan at execution time according to in-
formation discovered while running. This provides another
failure resolution mechanism that we assume is more power-
ful the FE, but less powerful than ground input. In addition,
replanning allows for the optimization of plans during ex-
ecution time according to newly discovered utility. Replan-
ning can therefore serve dual purposes: resolving task fail-
ures, and changing the plan to increase overall utility gain.

Given this context, we predict the overall utility achieve-
ment of a plan using an estimate of utility per unit cost uavg.
Then, assuming that tasks always succeed, our expected util-
ity for a plan would be buavg . To factor in task failure, we
assume that tasks fail with some probability P (fail), and we
assume that task failures follow a Poisson distribution. The
first planning/execution strategy that we analyze is the static
strategy. Here, since the strategy terminates execution on
failure, the system’s expected utility achievement is based
on how long it can be expected to execute. Then, the ex-
pected utility achievement of this strategy is given by:

U(Ss) = uavg ·min

(
b,

cavg
P (fail)

)
(1)

Here, cavg denotes the average cost of each task.
In the ground strategy, we include a rudimentary error re-

sponse of “going to ground” to seek manual intervention.
To model this in our framework, we assume that such “wait
for input” responses each incur a cost cw, and always allow
plan execution to continue. Then, if our plan has np tasks,
the utility achievement of this “ground” strategy is:

U(Sg) = uavg (b− P (fail)npcw) (2)

In the FE strategy, we introduce flexible execution and
assume that some subset of task failures can be resolved with
this feature. We denote the probability of a task failing in this
way as P (FE). Note that P (FE) < P (fail), since failures
that are resolvable by flexible execution are a subset of all
task failures in general. We assume that flexible execution
has a negligible cost. Then, the utility achievement of plan
execution using this strategy is:

U(Sf ) = uavg (b− (P (fail)− P (FE))npcw) (3)

Finally, we consider the replan strategy, which incorpo-
rates flexible execution and replanning with plan optimiza-
tion. Unlike flexible execution, replanning incurs some non-
negligible cost cr. We assume that, like flexible execution,
replanning is able to resolve some subset of task failures.
We denote the probability that a given task fails in a way that
can be resolved via replanning, but not flexible execution, as
P (replan). Finally, we assume that all failure modes can be
resolved via waiting for ground input. Then, if we denote the
probability that a failure is resolvable only by ground input
as P (wait):

P (fail) = P (wait) + P (replan) + P (FE) (4)

Figure 2: Two possible decompositions of a single parent
“Sample Site 1”. In the left decomposition, the lander ex-
cavates the site, samples target A, and communicates raw
data. In the right decomposition, the lander skips excava-
tion, samples site B, and communicates compressed data.
Both achieve the same goal of sampling site 1.

Failures are resolved by the least costly resolution mecha-
nism. Thus, when a task fails, our system attempts to resolve
it by flexible execution, if possible, falling back to replan-
ning and ground intervention in sequence. To model plan
optimization, we provide our planning system with opportu-
nities to discover utility at certain points during execution.
We denote the number of such opportunities as d, and the
expected additional utility discovered as ud. Then,

U(Sr) =dud + uavg

(b− np(P (wait)cw − P (replan)cr))
(5)

Planning Approach
Problem Model
We model this problem using a hierarchical task network
(HTN) to compile the domain-specific knowledge of the de-
pendency structure into the task network. HTNs have been
used successfully in industrial and other real-world applica-
tions to improve the tractability of planning problems in sys-
tems such as SHOP2 (Nau et al. 2003) and SHOP3 (Gold-
man and Kuter 2019). In an HTN, hierarchical tasks are de-
composed to a set of subtasks. We refer to the higher-level
tasks as “parent tasks”, and refer to their children as “sub-
tasks”. Parent tasks may decompose into a number of differ-
ent sets of subtasks; we refer to each of these sets as a po-
tential “decomposition” of that parent task. Finally, we refer
to tasks with no decompositions as “primitive tasks”. These
primitive tasks represent tasks that the lander can be directly
commanded to perform.

Decompositions provide a number of benefits to our plan-
ning approach, significantly reducing plan search space. In
addition, we can treat all subtasks of a parent task as a sin-
gular block for planning purposes. The lander only achieves



utility after completing an entire sequence of sample, ana-
lyze, communicate. Decompositions allow us to treat “sam-
ple, analyze, communicate” as a single unit and schedule
them accordingly. Thus, our model intrinsically biases the
lander against planning to sample without a corresponding
communication task. This may not always be optimal, if for
example, excavation and sampling is cheap and communica-
tion is very expensive. However, for our problem, energy use
is dominated by the excavation and sampling tasks, and the
decomposition paradigm effectively encodes this domain-
specific knowledge into our planning routine.

There are three main parent task types in our mission
model. The first is a Preamble, which consists of post-
landing initialization and other one-time initialization tasks.
Second are sampling tasks. These consist of excavation,
sample collection, transfer, analysis, and communication
tasks. Excavation can take place at one of two excavation
sites, and may be skipped if an excavation has previously
occurred for the specified site. For collection tasks, the lan-
der may choose between four collection targets: two for each
excavation site. It may revisit a target that has already been
sampled, still obtaining utility for a repeat sample. Then,
for communication tasks, the lander may choose to either
communicate raw data or compressed data. Finally, there
are Seismograph/Panorama tasks, which consist of seismo-
graphic data collection, panoramic image collection, and
communication of that data.

In our problem, we assign utility primarily to two activi-
ties: sampling and communication. Both of these task mod-
els are assigned a numeric value representing their utility,
which can be updated online by the planning and execution
system if knowledge at execution time alters the expected
utility of a given action. Utility for these tasks is achieved
only after their full decomposition has been successfully ex-
ecuted. Thus, for sampling utility to be achieved, a corre-
sponding communication step must successfully complete.

We assign utility to sampling tasks in order to differenti-
ate between sites that may be more or less interesting, de-
pending on the scientific value of the site. Communication
utility is larger, and remains constant. For the communica-
tion tasks, we assign higher utility and cost to tasks that
communicate raw data, compared to those that communicate
compressed data. This simulates a Pareto optimal “menu”
of communication options. The combination of sampling
and communication utilities represents the overall utility
of a parent sampling task. Seismograph/panorama utility is
driven solely by communication utility.

Planning Algorithm
Our planning algorithm uses the HTN model of the Europa
Lander problem to build a search graph, with nodes hold-
ing partial plans and edges holding task decompositions.
We perform a heuristic-guided branch and bound search on
this graph and select the best plan explored. The algorithm
consists of four phases: pre-processing, initialization, explo-
ration, and plan selection.

First, a pre-processing step flattens task decompositions
into a single layer, such that parent tasks decompose into
a chain consisting only of primitive, non-hierarchical sub-

Algorithm 1: Europa Lander Planning
Input: A list of tasks to schedule T
Output: A plan of scheduled tasks P
/* initialize exploration queue */
node collection = [];
add (plan=[], utility=0, cost=0) to node collection;
edge collection = [];
for d in task.decompositions do

new edge = (d, d.utility, d.cost);
add new edge to edge collection;

end
explore q = [];
for edge in edge collection do

add (node collection[0], edge) to explore q;
end
/* search exploration queue */
num explored = 0;
while num explored below exploration bound do

num explored++;
plan, decomp = explore q.get max();
if decomp tasks can be added to plan then

new plan = plan + decomp tasks;
add new plan to node collection;
for edge in edge collection do

if edge.task not in new plan and
new plan.cost + edge.cost below
max cost then

add (new plan, edge) to explore q;
end

end
end

end
/* find best plan in node

collection */
best plan = null;
for plan in node collection do

if plan.utility above best plan.utility then
best plan = plan;

end
end
return best plan;

tasks. This allows us to assign utility and energy cost directly
to each decomposition, because its breakdown into disparate
subtasks has already been performed. Then, each decompo-
sition’s utility is the sum of each of its subtasks’ utility. The
same is true for energy cost. This step is performed once per
domain model, offline. Preprocessing has exponential run-
time in the worst case, and future work may require addi-
tional search in decomposing tasks as well as planning them.

Our search graph consists of nodes containing partial
plans and their associated energy cost and utility. A node’s
cost is simply the sum of the costs of each task in the node’s
partial plan; the same goes for utility, though future work
may take joint utility into account. In the initialization phase,
the algorithm creates a single node containing an empty



plan, with utility and cost 0. Then, it iterates through all task
decompositions created in the pre-processing phase in order
to generate the set of edges that may be followed from a
given node. To finish the initialization phase, the algorithm
populates an exploration queue with (node, edge) pairs, pair-
ing the singular initial node with all edges in the collection.
At the end of the initialization phase, then, the exploration
queue consists of all task decompositions paired with the
empty plan.

In the exploration phase, the planner pops the top of the
exploration queue to get (P, T ), where P is a partial plan,
and T is the list of primitive subtasks comprising a task de-
composition. It then attempts to schedule all tasks in T given
the state of the world produced by following the plan P . If
the tasks cannot be scheduled, it moves on to the next ex-
ploration queue item. If the tasks can be scheduled, i.e. their
preconditions are met and their impacts do not produce any
conflicts, a new graph node is created. This node contains a
new plan P ′, the resulting plan after adding the tasks in T to
P .

After creating this plan node, the planner iterates through
the edge collection again, pairing the new plan with all pos-
sible tasks. In this iteration, it ignores tasks that have al-
ready been scheduled in the plan, so as to avoid duplicates.
The algorithm also filters these pairs to ensure that the to-
tal cost P.cost + T.cost < M , where M is the max energy
cost allowed (equal to the current battery charge of the lan-
der). This bounds our search, and we further bound the al-
gorithm’s search by limiting the number of exploration can-
didates examined. Note however that this bound maintains
optimality if we allow the algorithm to expand the entire
space. After filtering, these pairs are added to the exploration
queue, and the next queue item is examined. The exploration
queue is a priority queue, with (plan, decomposition) pairs
ordered by a heuristic value to improve search results. Given
a plan, decomposition pair (P, T ), we assign the heuristic
value h(P, T ) = P.utility + T.utility

T.cost . Finally, in the plan
selection phase, the algorithm iterates through all candidate
plan nodes, selecting the plan with the highest utility. Ties
are broken according to energy cost, where a lower energy
cost is preferred.

Empirical Evaluation
To test our model, we ran simulations of our planning and
execution system on three variants of the Europa Lander do-
main described in Figure 1. The first is the base scenario.
Here each task consumes an amount of energy that matches
its a priori expectation in the task network, but may be noisy,
with a standard deviation of 10%. In the second variant,
we bias this noise such that tasks are expected to consume
10% more energy than modeled. Finally, the third variant
biases noise in the opposite direction, such that tasks are ex-
pected to consume 10% less energy. For each variant, we
simulated each of the four planning/execution strategies dis-
cussed in our theoretical framework, and measured the util-
ity achieved. In simulation, the failure probability of each
task is uniform and independent. Each failure resolution
mechanism is assumed to have a fixed cost and always suc-

Figure 3: Average utility achieved in simulation of the base
Europa Lander domain for 4 planning strategies, compared
to theoretical model predictions.

ceed in resolving the issue. The data for each figure shows
the mean utility achieved across 50 simulations of the sce-
nario.

For our model calculations, we estimate our average util-
ity per cost (uavg) by analyzing plans generated by a pre-
scient planner. This planner has perfect execution informa-
tion a priori, so plan execution exactly matches the plan-
ner’s predictions. Task failure probability is assumed to be
0.1, and we assume flexible execution is able to handle
30% of such failures, while replanning is able to handle
an additional 60% of failures. Thus, P (replan) = 0.04 and
P (FE) = .02.

Our model predicts the “static” strategy to perform poorly,
since it has no failure resolution mechanisms and is thus
likely to terminate quickly. By introducing a failure recov-
ery mechanism, our model predicts the “ground” strategy
to improve performance considerably. However, this failure
recovery mechanism is still fairly costly. The “fe” strategy
introduces flexible execution to mitigate this. As such, our
model predicts a higher utility achievement, since some set
of failures are now resolved by a less costly mechanism. Fi-
nally, the “replan” strategy is predicted to perform best of all
the strategies. Like the “fe” strategy, it introduces another
failure resolution mechanism. However, it also introduces
additional utility through plan optimization. When utility is
discovered at execution time, the “replan” strategy is able to
exploit that discovery, where the other strategies are not.

In Figure 3, we compare the predictions of our model to
the measured utility achievement of our system in simula-
tion. We see that the four strategies follow the general con-
tour of our model’s predictions, but vary by some amount.



Figure 4: Average utility achieved in simulation of the Eu-
ropa Lander domain where all tasks take 10% more energy
than expected, compared to empirical results in the base do-
main.

While our predictive model generally matches our empiri-
cal measurements, it is limited in some aspects. The model
uses uavg as a way to estimate utility achievement based on
power, smoothing performance across the entire execution
into a linear model. However, in the Europa Lander domain,
utility is achieved only during communication events. Be-
cause the model views utility gain as purely linear, it is un-
able to capture the spikes in utility inherent in the domain.

In addition, in the Europa Lander domain, sites only need
to be excavated a single time, and multiple samples can be
taken from a single excavation site. This means that the first
sample taken at a site is much more costly than future sam-
ples. Because of this, if the system tends to run out of energy
while attempting to sample a site for the first time, the model
is likely to overestimate utility gain, since a significant por-
tion of energy is used while no utility is gained. On the other
hand, when the system tends to halt while repeatedly sam-
pling from an existing site, the model underestimates util-
ity. This behavior is prominently seen in the ground and FE
strategies in Figure 3. Both strategies spend a significant por-
tion of their execution repeatedly sampling from an excava-
tion site, leading to higher utility gain than expected during
these portions of the plan execution.

For the replan strategy in particular, we also consider the
effects of utility discovery and plan optimization in replan-
ning. To determine a value for d, the number of times that
utility discovery can be exploited, we calculate and upper
bound for this value based on the total energy available to
the system. However, the system may not be able to take
advantage of utility discovery this number of times, since it

Figure 5: Average utility achieved in simulation of the Eu-
ropa Lander domain where all tasks take 10% less energy
than expected, compared to empirical results in the base do-
main.

may run into too many task failures, or the planner may sim-
ply choose to complete other tasks. Thus, the calculations
for our model tend to overestimate the value of utility dis-
covery in the replanning strategy.

Next, we consider the effects of biased noise on the util-
ity gain of our system. First, we examine the scenario where
all tasks use 10 percent more energy on average than ex-
pected. A comparison of this scenario and the base scenario
is shown in Figure 4. Naively, we might expect utility in each
scenario to decrease by about 10 percent. However, because
utility is achieved in spikes through the completion of fairly
lengthy chains of tasks, events have an impact on utility only
if they increase or decrease the probability of successfully
completing a chain of tasks. In the “more energy” scenario,
the ground strategy appears generally unaffected.

The replan strategy is affected more heavily, since a lower
pool of energy available limits the strategy’s ability to take
advantage of discovered utility. On the other hand, because
it is able to replan, it can make use of lower cost actions
such as Seismograph/Panorama tasks to gain utility despite
lacking the energy to complete a sample.

Finally, we consider the scenario where tasks take 10 per-
cent less energy than expected (Figure 5). Here, the ground
strategy improves considerably in performance, while FE
improves at a lower clip. This is consistent with what we
see in the previous scenario. The ground strategy is able to
benefit significantly from the extra energy and complete an
extra sample cycle, while FE is not as close to this boundary
and thus is not affected as strongly.

The replan strategy also sees significant benefits from ex-



tra energy. Extra energy enables additional samples, whose
benefit is amplified by the potential for utility discovery. In
addition, the replan strategy is able to integrate knowledge
of the additional energy during execution time as it updates
state predictions with the reality on the ground. Thus, instead
of settling for a Seismograph/Panorama task, as might occur
in the base or high energy use scenarios, the replan strategy
is more often able to process a sample.

Related Work
Decision-theoretic planning is an effective approach to plan-
ning under uncertainty, particularly in robotic domains, as
it provides a formal model for reasoning about problems
in which actions have stochastic outcomes or the agent
has incomplete information about its environment (Iocchi
et al. 2016; Saisubramanian, Zilberstein, and Shenoy 2017;
Zilberstein et al. 2002). The primary objective of decision-
theoretic planning is to produce plans or policies that de-
fine the potential trajectories of actions that the agent may
take which maximizes its expected utility, rather than max-
imizing or guaranteeing goal-reachability (Boutilier, Dean,
and Hanks 1999). A standard approach in decision-theoretic
planning for modeling domains is to use a Markov deci-
sion process (MDP) (Bellman 1957) when the agent knows
the full evaluation of every state at each timestep, or a par-
tially observable Markov decision process (POMDP) (Spaan
2012) where this holds only for a subset of the variables that
define the statespace.

However, several issues in spacecraft or rover operations
complicate the use of said decision making models. First,
these models traditionally do not support durative or concur-
rent actions, but rather assume that all actions are instanta-
neous and fully sequential in nature. Second, although there
have been a number of approaches over the years aimed at
improving the scalability of these approaches (Guestrin et
al. 2003; Wray, Witwicki, and Zilberstein 2017; Yoon, Fern,
and Givan 2007), most algorithms that solve MDPs produce
policies that account for all contingencies and provide ac-
tions for all states in the domain. This is generally imprac-
tical or impossible in spacecraft and rover operations where
computational power is (often severely) limited, and more
so in our problem where the battery is non-rechargeable
and the domain model is expected to be modified repeatedly
throughout the agent’s operation.

Onboard planning and execution are of great interest to
the space domain. Flexible execution of tasks is a central fo-
cus of execution engines like PLEXIL (Verma et al. 2005)
and TRACE (de la Croix and Lim 2020). The Earth Ob-
serving One (EO-1) spacecraft (Chien et al. 2005), which
flew for over 12 years from 2004-2017, was designed specif-
ically to react to dynamic scientific events. Planning was
performed by the CASPER planning software (Chien et al.
2000), which took on the order of 10s of minutes to replan
but did not produce temporally flexible plans. To address
this, the onboard executive (SCL) was able to flexibly in-
terpret the execution of a plan to handle minor execution
runtime variations. The flight and ground planners (Chien et
al. 2010) both used a domain specific search algorithm that

enforced a strict priority model over observations for a lim-
ited model of utility. Recently, the Intelligent Payload Ex-
periment (IPEX) also successfully used the CASPER plan-
ning software to achieve its mission objective, further vali-
dating the efficacy of using onboard replanning to handle dy-
namic events and observations during operation even when
the plans are not temporally flexible (Chien et al. 2017).

The M2020 Perseverance rover also plans to fly an on-
board planner (Rabideau and Benowitz 2017) to reduce lost
productivity from following fixed time conservative plans
(Gaines et al. 2016). Like the planning approach we pro-
pose in this paper, the M2020 planning architecture also re-
lies on rescheduling and flexible execution (Chi et al. 2018),
ground-based compilation (Chi et al. 2019), heuristics (Chi,
Chien, and Agrawal 2020), and very limited handling of
planning contingencies (Agrawal et al. 2019). However, it
uses a non-backtracking planner, which cannot take advan-
tage of plan optimization or utility discovery. Our work also
takes a different focus, primarily examining the effects of
task failure and considering integrated planning in the con-
text of failure resolution. Finally, many characteristics of the
M2020 mission are fundamentally different from the mis-
sion concept we consider here, such as the lack of reliable
a priori model parameters, the inability to recharge the bat-
tery, and the long communications blackout time windows
incentivizing greater mission autonomy.

Future Work
Our work focuses primarily on our planning system’s re-
sponse to adverse events such as task failure. Our exam-
ination of positive exogenous events is limited to analysis
of utility discovery. However, in space exploration domains,
due to conservative parameter assignments, we often find
that tasks finish early or use fewer resources than the margin
allocated to them. Reasoning about these events may pro-
vide a model that more accurately represents the reality of
the Europa Lander domain.

In addition, in this work we focus primarily on energy as
a resource. However, a number of other resources exist, and
the consumption of any of these may be noisy or biased, af-
fecting plan execution. In particular, task execution time has
wide-ranging effects on both task energy use and plan execu-
tion as a whole, especially when deadlines come into play.
These deadlines are especially present in the Europa Lan-
der domain in the form of ground communication windows.
Task execution time and other variables therefore represent
a significant unexplored area of work in this domain.

While we react to uncertainty at execution time, we do
not take this into account when planning. This is apparent in
our system’s behavior in the scenario where tasks take more
energy than expected. A more sophisticated planner would
explicitly integrate probability of such adverse events, max-
imizing expected utility. For example, excavation tasks in-
volve risk; task failure could result in significant energy loss
or damage to the lander. Reasoning about exogenous events
such as these would improve utility achievement by poten-
tially avoiding such risks, or even seeking them out later in
the mission when failure is less impactful.
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