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Abstract 
This paper presents a way to command a system of systems 
robustly as a single entity.  Instead of modeling each 
component system in isolation and then manually crafting 
interaction protocols, this approach starts with a model of 
the collective population as a single system.  By compiling 
the model into separate elements for each component 
system and utilizing a teamwork model for coordination, it 
circumvents the complexities of manually crafting robust 
interaction protocols.  The resulting system is both globally 
responsive by virtue of a team oriented interaction model 
and locally responsive by virtue of a distributed approach to 
planning as well as model-based fault detection, isolation, 
and recovery. 

Introduction 
NASA mission concepts for the next few decades typically 
involve progressively larger teams of tightly coordinated 
spacecraft in dynamic, partially understood environments. 
In order to manage the teams, each spacecraft must 
respond to global coordination anomalies as well as local 
events.  Currently techniques for implementing such teams 
are extremely difficult.  They involve either giving one 
spacecraft tight global control or giving each spacecraft 
separate commands with explicit communication actions to 
coordinate.   While both approaches work for two or three 
simple spacecraft, neither scales well to larger populations 
or more complex spacecraft.  New techniques are needed 
to closely coordinate three or more complex spacecraft. 

Flexible teamwork (Tambe 1997) is a technique 
developed in the multi-agent community for teams of 
agents that achieve joint goals in the face of uncertainties 
arising from complex dynamic domains that obstruct 
coherent teamwork.  Flexible teamwork involves giving 
the agents a shared team plan and a general model of 
teamwork.  Agents exploit this model and team plan to 
autonomously reason about coordination and 
communication, providing the requisite flexibility.  While 
this framework has been implemented in the context of 
real-world synthetic environments like robotic soccer and 
helicopter-combat simulation, these systems take an ad hoc 
rule-based approach toward failure diagnosis and response.   

Our system takes a model-based approach toward 
representing teams and their group activities.  As Figure 1 

shows, a user models a team as a conceptual single entity, 
but the system distributes the model across the team to 
move all reasoning as close as possible to the components 
being reasoned about.  The result is a team with elements 
that are both locally and globally responsive, without a 
user explicitly thinking about distribution and 
communication.  Planning and multi-agent role assignment 
are also based on a single model that naturally distributes 
across multiple coordinated planners. 

 
Figure 1. User defines coordinated activities assuming a 
global executive, and the system handles the distribution 
and coordination to implement on local executives. 

Defining the approach starts with an explanation of 
the system architecture has three components residing on 
each robot and how the components interact.  Subsequent 
sections then discuss each of the three components: a 
feedback controller, and executive, and a planner.  Finally 
the last two sections discuss related work and conclusions. 

System Architecture 
The system’s architecture is a generalization of the three 
layer approach (Gat 1997) toward defining an agent.  The 
three components in this approach are a feedback 
controller, a reactive plan executer, and a planner.  The 
feedback controller merges a set of stimulus/response 
behaviors into feedback loops.  As such this layer does not 
perform any high level reasoning, and can satisfy stringent 
real-time requirements.  The reactive plan executor 
determines which behaviors are active at any given 
moment.  As such it reasons about system state and how 
behaviors merge to reach target states.  This component 
still has hard real-time requirements, but they are less 
demanding than the feedback controller.  Finally, the 
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planner reasons about which activities to execute at any 
given moment.  Since such reasoning can get 
computationally intensive, the planner does not provide 
hard real-time guarantees. 

In our distributed system we place all three 
components on each robot.  While there is a single model 
of the entire team, the models get broken down into 
fragments that are distributed to each component, and the 
components communicate amongst them selves for 
coordination at various levels.   The controllers can tightly 
control multi-rover activities like rappelling over a cliff, 
the executives can determine local state and coordinated 
execution information to robustly manipulate local and 
team activities, and the planners can coordinate the 
planning of shared activities to be performed by the group. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Autonomy is implemented using three identical 
components that share information at each level. 

This work is similar to that of Simmons et al. (2002) 
in that it contains the same components that are organized 
in the same way.  The main difference between our 
approaches stems from an attempt to use a single model of 
the collection of robots and then have a compiler 
automatically distribute the model.  Thus our system from 
a modeler’s perspective looks like a single planner-
executive-controller collection that manages all robots. 

Feedback Controller 
A feedback controller implements one or more feedback 
control loops with varying latency requirements.  For fast 
mobile robots the hard real-time latency requirements are 
quite stringent to keep robots from running into each other 
or other obstacles.  These feedback loops are typically 
grouped to implement simple behaviors like drive to a 
location, turn, and avoid collisions.  At any given time 
some subset of the available behaviors are active, 
depending on the robot’s current activities.  For instance, a 
rover traveling to an object would have the drive to 
location and avoid obstacles behaviors active.  At any 
given moment two active behaviors might make 
conflicting demands on a given actuator, so behavior 
coordination mechanisms are associated with each 
actuator.  For instance, driving might conflict with 
avoiding obstacles if an obstacle is between a robot and its 
target location. 

The Control Architecture for Multi-robot Planetary 
OUTpost (CAMPOUT) (Pirjanian et al. 2001) distributes 
such a feedback controller across multiple robots.  As 
illustrated in figure 3, the feedback controllers on each 
robot host a set of behaviors and behaviors coordinators, 
but which behavior, or coordinator, belongs on which 
robot need not be specified.  It is quite possible to put all 
behaviors on one robot for a form of master/slave control, 
and it is also possible to automatically distribute the 
behaviors based on latency, communications, and 
computation requirements. 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. CAMPOUT’s feedback controllers coordinate 
sets of behaviors that can subscribe to information from 
local and remote sensors as well as provide information for 
local and remote coordinators. 

For instance, suppose that a given pair of robots had 
two arms, and each arm had respective behaviors to raise 
and lower a gripper.  All that needs to be specified are the 
4 behaviors to raise and lower each arm.  If one arm 
happens to be on each robot, then two behaviors will 
naturally end up on each robot’s controller, but the 
behaviors might end up on one robot if they require a lot of 
computation and only one robot has a fast processor. 

Executive 
Once sensor placement, computation and feedback latency 
requirements have determined the distribution of behaviors 
across multiple robots, this distribution subsequently 
determines what each robot’s executive reasons about.  In 
general, an executive only reasons about those sensors that 
it has direct access to and those behaviors that it can 
directly manipulate. 

Each executive has three distinct components: mode 
identifier, mode reconfigurer, and team sequencer.  As 
illustrated in Figure 4, the mode identifier combines 
sensory information from the hardware with past 
commands from the reconfigurer to estimate the system’s 
state.  The mode reconfigurer then takes the current state 
estimate with a target mode from the team sequencer to 
determine the next commands to pass to a robot’s 
hardware drivers.  Finally, the team sequencer 
procedurally controls the identifier-reconfigurer-driver 
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feedback loop by providing target states to the 
reconfigurer.  At all times local mode identifiers maintain 
state knowledge, and sequencers react to this information 
by changing the target state.  

While this architecture has been explored for single 
agent systems using TITAN (Ingham et al. 2001), it has 
yet to be cleanly extended to tightly coordinated teams.  
This work makes the extension by developing techniques 
for distributed mode identification, distributed mode 
reconfiguration, and team sequencing.  While these 
techniques extend the sequencer, they replace the mode 
identification and reconfiguration components to support 
distributed computation and hard real-time performance 
guarantees. 

 
Figure 4. Component architecture of executive on each 
robotic element, where team state information is kept 
consistent across all elements. 

Distributed Mode Management 
By building off of the model-based description language 
developed for DS-1’s Mode Identification & Recovery 
(MIR) executive (Williams&Nayak 1997), we acquire a 
representation for explicitly defining the interrelationships 
between an agent team’s complete set of software and 
hardware components.  This facilitates reasoning about 
how one component’s status affects the others’ and 
ultimately sensor observations, which enables taking a set 
of observations and inferring the team’s status.  While 
there are a number of constructs in the language, they all 
support defining a network of typed components.  These 
components are defined in terms of how a component’s 
modes constraint its port variables, and these constraints 
are encoded using variable logic equations – Boolean 
equations where the literals are variable equalities.   

For instance, the following defines an extremely 
simplistic system with two components for its robot arms.  
In this system each arm command refers to a distinct 
behavior.  In this case an arm can be commanded to raise 
and hold itself at the top or lower and hold itself at the 
bottom.  These behaviors are terminated to stop the arm 
whenever some stress threshold is exceeded.  The arm will 
stay stopped until the sensed stress falls back below the 

threshold, at which point the raise or lower behaviors can 
be restarted 

(defvalues ArmCmd (raise lower none)) 
(defvalues bool (T F)) 

(defcomponent Arm 
  :ports ((ArmCmd cmd)(bool stress)) 
  :modes 
((stalled)(stopped)(rising)(falling)) 
  :transitions 
  ((* -> rising  (:and (= stress F) 
                       (= cmd raise))) 
   (* -> falling (:and (= stress F) 
                       (= cmd lower))) 
   (* -> stalled (= stress T)) 
   (stalled -> stopped (= stress F)))) 

(defsystem rovers 
  :sensors  
  ((bool LArmAtTop)(bool LArmStress) 
   (bool RArmAtTop)(bool RArmStress)) 
:affectors ((ArmCmd LArmCmd) 
            (ArmCmd RArmCmd)) 

  :structure 
  ((Arm RArm (RArmCmd RArmStress)) 
   (Arm LArm (LArmCmd LArmStress)))) 

 
Current model-based diagnosis techniques use some 

variant of truth maintenance (Nayak&Williams 1997), 
where components are translated into Boolean equations.  
These techniques require collecting all observations into a 
central place and then invoking heuristic algorithms to find 
the most probable mode that agrees with the observations.  
While some work has been done to distribute these 
systems, their underlying algorithms cannot support hard 
real-time guarantees by virtue of having to solve an NP-
Complete problem for each collection of observations.  
While heuristics can make these algorithms fast on 
average, the point is that they cannot guarantee 
performance in all cases. 

Instead of working with distributed truth 
maintenance systems, we will take a simpler approach 
suggested by knowledge compilation research.  This 
approach involves moving as much of the computation into 
an off board compilation phase as possible to simplify the 
onboard computation.  Where previous systems take linear 
time to compile a model and then possibly exponential 
time to use the compilation to perform mode estimation, 
our approach takes possibly exponential time to compile a 
model into a decomposable negation normal form 
representation and then linear time to perform mode 
estimation with the equation.   

Definition 1: A variable logic equation is in 
Decomposable Negation Normal Form (DNNF) if (1) it 
contains no negations and (2) the subexpressions under 
each conjunct refer to disjoint sets of variables. 

For instance, the two robot arm example compiles into 
a tree-like structure in Figure 5, where the branch that is 
local to the left arm is a mirror image to that for the right 
arm.   

Mode Identification Mode Reconfiguration

Team Sequencing

 

Team  State 

activities

commandsensors 

updates 

Current Mode & 
Execution State 

controlle

target states



Given that conjuncts have a disjoint branch variables 
property, the minimal cost of a satisfying variable 
assignment is just the cost of a variable assignment with 
single assignment equations, the minimum of the 
subexpression costs for a disjunct, and the sum of the 
subexpression costs for a conjunct.  With this observation, 
finding the optimal satisfying variable assignments 
becomes a simple three-step process: 

1. associate costs with variable assignments in leaves; 
2. propagate node costs up through the tree by either 

assigning the min or sum of the descendents’ costs to 
an OR or AND node respectively; and 

3. if the root’s cost is infinity or some other value then 
respectively return failure or descend from the root to 
determine and return the variable assignments that 
contribute to its cost. 

For instance, Figure 5 illustrates the process of 
determining that the right arm is stopped.  First, observing 
that RArmStress is false results in assigning values to the 
RArmStress leaves, and the mode and command leaves get 
costs related to the last known modes and commands.  
Second, costs are propagated to the tree root. Third, the 
root node’s cost is used to drill down to find the lowest 
cost tree with the mode assignment (i.e. RAM1=stopped). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Computing the status of the right arm given past 
sensor readings and commands is a matter of assigning leaf 
values and then performing a MINSAT computation. 

Finally, it turns out that that the generated DNNF can 
also be used to compute the commands to reach a target 
state given the currently estimated state (Barrett 2005).  
This is because reconfiguration planning can also be 
couched as a MINSAT problem and the only difference in 
the planning and diagnosis algorithms involves how to 
assign leaf costs.  Where diagnosis assigns 0 and inf to 
initial state and command/observation leaves to determine 
the most likely final state, planning assigns 0 and inf to 
initial and final state leaves to determine the least cost 
commands to achieve the final state. 

As Figure 5 suggests, the right arm’s executive only 
gets a the piece of the DNNF to reason about the right arm 
for diagnosis and reconfiguration planning.  The 
distribution of the DNNF starts with the sensors and 
behaviors that an executive can see and control.  These 
point to leaves of a DNNF that are local to the executive.  
At this point internal nodes are assigned to a local 
executive when they only point to leaves or parents 
assigned to that executive.  All other nodes are assigned to 
the team state.  In the two arm example the assignment 
resulted the rightmost “and” being placed in the team state. 

Procedural Control 
The distributed onboard sequencer is based both on the 
Reactive Model-based Programming Language (RMPL) 
(Williams et al. 2001) and a model of flexible teamwork 
(Tambe 1997) developed within the distributed artificial 
intelligence community.  Flexible teamwork is more than a 
union of agents’ simultaneous execution of individual 
plans, even if such plans have explicit coordination 
actions. Uncertainties often obstruct pre-planned 
coordination, resulting in corresponding breakdowns.  
Flexible teamwork involves giving agents a shared team 
plan and a general model of teamwork. Agents then exploit 
this model and plan to autonomously handle coordination 
and communication, providing the flexibility needed to 
overcome emerging unexpected interactions caused either 
by slight timing delays or anomalies.   

RMPL raises the level at which a control programmer 
thinks about robotic systems.  Instead of reasoning about 
actuators, sensors, and hardware, a RMPL programmer 
thinks in terms of controlling a system through a sequence 
of configurations.  Thus a control program is written at a 
higher level of abstraction, by asserting and checking 
states which may not be directly controllable or 
observable.   

As an example of the rich types of behavior that an 
RMPL control programmer can encode, the control 
program below shows a simplistic approach toward 
defining an activity that gets two rovers to jointly lift a bar.  
It performs the task by commanding the robot arms into a 
rising mode whenever they are stopped, and then stopping 
when one of the robots senses that its arm is at the top 
position.  While only partially shown in this simplistic 
example, RMPL code can express numerous types of 
behavior including iteration, conditional branching, 
concurrent tasks, and preemption. 

(defactivity liftBar () 
   (do (parallel 
          (whenever (= RArm.Mode stopped)  
             donext (= RArm.Mode rising)) 
          (whenever (= LArm.Mode stopped)  
             donext (= LArm.Mode rising))) 
      watching (:or (= LArmAtTop T)  
                    (= RArmAtTop T)))) 

The formal semantics of RMPL has been defined in 
terms of Hierarchical Constraint Automata (HCA), where 
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the nesting of automata directly corresponds to the nesting 
of RMPL constructs.  For instance, Figure 6 has the HCA 
for our example, where the outer and two inner boxes 
respectively correspond to the do-watching and the 
two whenever-donext constructs.   
 

 
Figure 6. Hierarchical constraint automaton (HCA) for two 
robot arms lifting a bar, where LAAT, RAAT, LAM, and 
RAM respectively denote LArmAtTop, RArmAtTop, 
LArm.Mode, and RArm.Mode. 
 

Unlike standard automata, multiple locations in an 
HCA can be marked.  When marked a location stays 
marked until its target state (if any) has been reached. At 
which point the mark gets replicated zero or more times 
over arcs that have true conditions.  For instance, the two 
left locations lack target states, but stay marked by virtue 
of the loop arcs.  When a robot arm stops, the appropriate 
arc is enabled and the arm’s target state becomes ‘rising’.  
This continues until the Maintain() fails and erases the 
entire automaton, reflecting the do-watching construct. 

In general, an HCA corresponds to a tree of parallel 
processes whose execution follows the following routine.  
As this algorithm shows, a location is a simple process that 
asserts a target state and exits upon reaching that state or 
being aborted from above.  Higher level HCAs manage 
child components and cannot be restarted until exiting. 

 
 Process Execute(HCA) 
  If HCA is a location 
   Assert target state until target reached 
  Else 
   For each initial child component M 
    Start Execute(M) 
   Repeat 
    If the Maintain() condition fails then  
     Abort each active child component 
    For each child component M that exits 

     For each transition M ⎯→⎯C N in HCA 
      If C holds and N is not executing then 
       Start Execute(N) 
   Until no more child components are executing 
  Exit 

 
From a representational standpoint, team plans are 

similar to any other hierarchical plan.  The only syntactic 
addition to turn a hierarchical plan into a team plan 
involves defining teams to perform activities and assigning 

roles to teammates.  More precisely, injecting teamwork 
modeling into an existing hierarchical plan execution 
system involves adding three features (Tambe 1997): 

• generalization of activities to represent team 
activities with role assignments; 

• representation of team and/or sub-team states; and 
• restrictions to only let a teammate modify a team 

state. 

The key observation underlying the use of RMPL is 
how the language’s approach to defining a control program 
as an HCA naturally matches the approach to defining a 
team plan with a model of flexible teamwork.  Team plans 
are hierarchically defined in terms of sub-plans and 
primitive actions, where each teammate is assigned a role 
consisting of a subset of the sub-plans and actions.  
Returning to the our example, the Maintain() is a team 
HCA with components that are local HCAs for each rover.  
Thus the right hand rover need only address the 
components of Figure 7, and the two rovers need only 
communicate to be consistent over the team’s Maintain() 
condition.  The condition tells the rovers when to 
collectively abort their HCAs.  In general, agents only 
need to communicate when a team level automaton 
changes its active components or some property of its 
Maintain() condition changes.  Changes in a local HCA’s 
components can be hidden.  

As the example implies, all that we need to know to 
distribute an RMPL procedure is the distribution of mode 
variables and sensors.  Since mode variable assignments 
were determined by DNNF distribution, the distribution of 
local and team HCAs follows from sensor and behavior 
distribution.  Thus an RMPL programmer does not have to 
worry about synchronization issues across multiple agents.  
The underlying model of flexible teamwork will robustly 
manage these issues by keeping team state information 
consistent among the closely coordinated population of 
agents.  The association of RMPL procedures to one or 
more robots similarly follows from the HCA distribution, 
and since RMPL procedures are used to implement plan 
activities, the distribution permeates to determining the 
local activities that a robot has which robots participate in 
which team activities. 

 
Figure 7. What the right-hand arm only executes those 
HCAs that refer to states and sensors local to the right arm. 

Maintain(LAAT=T||RAAT=T) 
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Distributed Continual Planner 
The need to rapidly respond to unexpected events 
motivates continuous planning, an approach where a 
planner continually updates a sequence in light of 
changing operating context.  In such an operations mode, a 
planner would accept and respond to activity and state 
updates on a one to ten second time scale.  CASPER 
(Chien et al. 2000) is an example of a continuous planner 
based on a heuristic iterative repair approach toward 
planning (Zweben et al. 1994, Fukunaga et al. 1997).  This 
approach takes a complete plan at some level of abstraction 
and manipulates its actions to repair detected flaws.  
Example flaws would involve an action being too abstract 
to execute or many simultaneous actions with conflicting 
resource needs. 

Extending the CASPER continual planning framework 
to perform continual iterative repair within the 
planner/scheduler modules results in the distributed 
CASPER continual planning algorithm illustrated in Figure 
8.  Essentially the algorithm manipulates the activities in 
PLAN to get rid of detected problems in PROECTION, 
and a window sweeps over the plan from left to right over 
to determine which near term activities to pass to the 
executives.  While some activities are local, others are 
shared and must be kept identical across multiple planners. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Two CASPER continuous planners that reason 
about an intersecting set of activities for two robots, where 
the intersection activities  must be kept identical as the 
planners manipulate their plans. 
 

More precisely, the algorithm is a continuous look of 
the seven steps below, where a mission manager can insert 
new goal activities into PLAN.  Line 1 makes the 
PROJECTION variable (containing state variable profiles) 
always reflect how the spacecraft’s state should evolve as 
its plan executes, and the sixth line causes this execution 
by passing near-term activities to the executive/diagnos-
tician. 

The expected state evolution changes as a plan gets 
new goal activities and the perceived state diverges from 
expectations.  This divergence is caused by unexpected 
exogenous events and activities having unexpected 

outcomes. Since a planning model can only approximate 
the reality experienced during execution, these unexpected 
state changes can always happen.  Thus revising 
PROJECTION can result in detecting flaws in a local plan 
at any moment, and lines 2 through 4 select and apply 
repair methods to fix these flaws.  For instance, a satellite 
observation can take an unexpectedly long time to 
complete.  Depending on the delay, a later observation 
may be impossible due to the target being too far behind 
the satellite when the observation starts.  A repair method 
might fix the flaw by rescheduling the observation at a 
later time. 

While changes to local activities can remain private to 
a single spacecraft, changes to shared activities must be 
made public, and line 5 communicates these changes.  In 
general, the use of CONSTRAINTS and flaw repair 
methods can implement a number of coordination 
strategies. To be more concrete, suppose that a repair 
method suggests changing the start time of a shared 
activity.  After changing the activity's startTime variable, 
the spacecraft has to inform other participating spacecraft 
of the change.  In this way the spacecraft can follow an 
asynchronous weak commitment (AWC) (Yokoo& 
Hirayama 1998) search approach to maintaining plan 
coordination. 

 
Distrubuted CASPER continual planning process 
Given: a PLAN with multiple local and shared activities 
 a PROJECTION of PLAN into the future 
 a set of CONSTRAINTS on shared activities 
 
1. Revise PROJECTION using the currently perceived 

state, new goal activities from a mission manager, and 
received changes to shared activities.  

2. Heuristically choose a plan flaw in PROJECTION. 
3. Heuristically choose a flaw repair method that honors 

CONSTRAINTS. 
4. Use method to alter CONSTRAINTS, PLAN, and 

PROJECTION. 
5. Communicate changes to shared activities in PLAN 

and CONSTRAINTS. 
6. Release relevant near-term activities in PLAN to the 

executive. 
7. Go to 1. 

 
More precisely, the AWC approach, which is central 

to our architecture for managing shared activities, involves 
agents asynchronously assigning values to their variables 
from domains of possible values, and communicating the 
values to neighboring agents with shared constraints.  Each 
variable has a non-negative integer priority that changes 
dynamically during search.  A variable is consistent if its 
value does not violate any constraints with higher priority 
variables.  A solution is a value assignment in which every 
variable is consistent. 

To simplify describing the algorithm, suppose that 
each agent has exactly one variable and constraints 
between variables are binary.  When an agent’s variable 
value is not consistent with neighboring variable values, 

activities activities 

PLAN

PROJECTION 



there can be two cases: (i) good case where there exists a 
consistent value in the variable’s domain; (ii) nogood case 
that lacks a consistent value.  In the good case with one or 
more value choices available, an agent selects a value that 
minimizes conflicts with lower priority agents – the min-
conflict heuristic.  On the other hand, in the nogood case, 
the priority of the agent is increased to max+1, where max 
is the highest priority of neighboring agents.  In this 
approach, a bad value selection by a higher agent make 
does not force lower agents to exhaustively search for local 
solutions; nogood situations locally increase a priority to 
make previously higher agents choose new values.  
Furthermore, an increasing agent sends a nogood message 
with its agentView (the values and priorities of 
neighboring agents).  These messages are used to avoid 
repeating past situations where an agent has no consistent 
values in its domain. Extension of AWC to multiple 
variables per agent has been investigated in (Yokoo and 
Hirayama 1998). 

Related Work 
Since distributed autonomy is an active field, a complete 
list of related systems would fill a tome, which forces me 
to be incomplete here.  The most obviously related work is 
that by Simmons et al. (2002) in that it puts three layers on 
each robot and components at each layer communicate 
with each other, but their approach does not focus on 
characterizing the population of robots as a single entity 
and lacks a model-based approach toward mode 
estimation.  On the other hand they include a capability 
server that enables adding robots to a population at any 
time, a feature that this approach currently lacks. 

The closest related work on distributed sequencing of 
teams comes from STEAM (Tambe 1997) and TPOT-RL 
(Stone 1998).  These two systems address teams of tightly 
coordinated agents that can fail, but they are based on rule-
based approaches that lack system models to facilitate 
principled approaches to planning, mode estimation, and 
failure response.  

Most other systems focus either on emergent 
behaviors of multiple closely coordinating behavioral 
agents or planned behaviors of loosely coordinated agents.  
Since this work involves planned behaviors of robots with 
varying levels of coordination, I will focus on such 
systems here. 

Conclusions 
This paper presents a model-based executive for 
command-ing teams of agents.  It works by letting an 
operator define and command the team as a single entity 
with a single controlling CPU.  A compiler then distributes 
the control functions guided by a specification assigning 
system components (sensors and actuators) to team 
members. 

Each component of this system exists in isolation.  
CASPER is a very mature continual planner that has flown 
on the EO1 satellite, and SHaC (Clement&Barrett 2003) is 
an existing system for coordinating distributed planners 
based on shared activities that has been tested in 
simulation.  The distributed executive (Barrett 2005) also 
has also been tested in simulation.  Finally, the 
CAMPOUT distributed feedback controller (Pirjanian et 
al. 2001) has been tested on a variety of tasks from 
cooperative transport of a beam to cooperatively rappelling 
over a cliff.  While each component of the system exists, 
the full integration of them has yet to occur. 

Finally, humans may interact with the distributed 
autonomy system at each of the three levels: planner, 
executive, and feedback controller.  At the feedback 
controller level, one of the sensors in figure 3 might be a 
human actuated joystick, giving the human tight control of 
low level behaviors.  At the executive level a human might 
directly request the execution of a team procedure or 
perform assigned elements of procedures like any other 
agent.  At the plan level, a human might manipulate shared 
activities that are subsequently altered in the planners on 
other agents.  Thus from lowest to highest, each level has 
its mode of interaction, joy sticking to tactical to strategic. 
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