
Toward Distributing Autonomy over Robot Teams

Anthony Barrett

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive, M/S 126-347
Pasadena, CA 91109-8099

anthony.barrett@jpl.nasa.gov

Abstract
This paper presents a way to command a system of systems
robustly as a single entity. Instead of modeling each
component system in isolation and then manually crafting
interaction protocols, this approach starts with a model of
the collective population as a single system. By compiling
the model into separate elements for each component
system and utilizing a teamwork model for coordination, it
circumvents the complexities of manually crafting robust
interaction protocols. The resulting system is both globally
responsive by virtue of a team oriented interaction model
and locally responsive by virtue of a distributed approach to
planning as well as model-based fault detection, isolation,
and recovery.

Introduction
NASA mission concepts for the next few decades typically
involve progressively larger teams of tightly coordinated
spacecraft in dynamic, partially understood environments.
In order to manage the teams, each spacecraft must
respond to global coordination anomalies as well as local
events. Currently techniques for implementing such teams
are extremely difficult. They involve either giving one
spacecraft tight global control or giving each spacecraft
separate commands with explicit communication actions to
coordinate. While both approaches work for two or three
simple spacecraft, neither scales well to larger populations
or more complex spacecraft. New techniques are needed
to closely coordinate three or more complex spacecraft.

Flexible teamwork (Tambe 1997) is a technique
developed in the multi-agent community for teams of
agents that achieve joint goals in the face of uncertainties
arising from complex dynamic domains that obstruct
coherent teamwork. Flexible teamwork involves giving
the agents a shared team plan and a general model of
teamwork. Agents exploit this model and team plan to
autonomously reason about coordination and
communication, providing the requisite flexibility. While
this framework has been implemented in the context of
real-world synthetic environments like robotic soccer and
helicopter-combat simulation, these systems take an ad hoc
rule-based approach toward failure diagnosis and response.

Our system takes a model-based approach toward
representing teams and their group activities. As Figure 1

shows, a user models a team as a conceptual single entity,
but the system distributes the model across the team to
move all reasoning as close as possible to the components
being reasoned about. The result is a team with elements
that are both locally and globally responsive, without a
user explicitly thinking about distribution and
communication. Planning and multi-agent role assignment
are also based on a single model that naturally distributes
across multiple coordinated planners.

Figure 1. User defines coordinated activities assuming a
global executive, and the system handles the distribution
and coordination to implement on local executives.

Defining the approach starts with an explanation of
the system architecture has three components residing on
each robot and how the components interact. Subsequent
sections then discuss each of the three components: a
feedback controller, and executive, and a planner. Finally
the last two sections discuss related work and conclusions.

System Architecture
The system’s architecture is a generalization of the three
layer approach (Gat 1997) toward defining an agent. The
three components in this approach are a feedback
controller, a reactive plan executer, and a planner. The
feedback controller merges a set of stimulus/response
behaviors into feedback loops. As such this layer does not
perform any high level reasoning, and can satisfy stringent
real-time requirements. The reactive plan executor
determines which behaviors are active at any given
moment. As such it reasons about system state and how
behaviors merge to reach target states. This component
still has hard real-time requirements, but they are less
demanding than the feedback controller. Finally, the

Conceptual Actual

Local
Autonomy

Global
Autonomy

Local
Autonomy

planner reasons about which activities to execute at any
given moment. Since such reasoning can get
computationally intensive, the planner does not provide
hard real-time guarantees.

In our distributed system we place all three
components on each robot. While there is a single model
of the entire team, the models get broken down into
fragments that are distributed to each component, and the
components communicate amongst them selves for
coordination at various levels. The controllers can tightly
control multi-rover activities like rappelling over a cliff,
the executives can determine local state and coordinated
execution information to robustly manipulate local and
team activities, and the planners can coordinate the
planning of shared activities to be performed by the group.

Figure 2. Autonomy is implemented using three identical
components that share information at each level.

This work is similar to that of Simmons et al. (2002)
in that it contains the same components that are organized
in the same way. The main difference between our
approaches stems from an attempt to use a single model of
the collection of robots and then have a compiler
automatically distribute the model. Thus our system from
a modeler’s perspective looks like a single planner-
executive-controller collection that manages all robots.

Feedback Controller
A feedback controller implements one or more feedback
control loops with varying latency requirements. For fast
mobile robots the hard real-time latency requirements are
quite stringent to keep robots from running into each other
or other obstacles. These feedback loops are typically
grouped to implement simple behaviors like drive to a
location, turn, and avoid collisions. At any given time
some subset of the available behaviors are active,
depending on the robot’s current activities. For instance, a
rover traveling to an object would have the drive to
location and avoid obstacles behaviors active. At any
given moment two active behaviors might make
conflicting demands on a given actuator, so behavior
coordination mechanisms are associated with each
actuator. For instance, driving might conflict with
avoiding obstacles if an obstacle is between a robot and its
target location.

The Control Architecture for Multi-robot Planetary
OUTpost (CAMPOUT) (Pirjanian et al. 2001) distributes
such a feedback controller across multiple robots. As
illustrated in figure 3, the feedback controllers on each
robot host a set of behaviors and behaviors coordinators,
but which behavior, or coordinator, belongs on which
robot need not be specified. It is quite possible to put all
behaviors on one robot for a form of master/slave control,
and it is also possible to automatically distribute the
behaviors based on latency, communications, and
computation requirements.

Figure 3. CAMPOUT’s feedback controllers coordinate
sets of behaviors that can subscribe to information from
local and remote sensors as well as provide information for
local and remote coordinators.

For instance, suppose that a given pair of robots had
two arms, and each arm had respective behaviors to raise
and lower a gripper. All that needs to be specified are the
4 behaviors to raise and lower each arm. If one arm
happens to be on each robot, then two behaviors will
naturally end up on each robot’s controller, but the
behaviors might end up on one robot if they require a lot of
computation and only one robot has a fast processor.

Executive
Once sensor placement, computation and feedback latency
requirements have determined the distribution of behaviors
across multiple robots, this distribution subsequently
determines what each robot’s executive reasons about. In
general, an executive only reasons about those sensors that
it has direct access to and those behaviors that it can
directly manipulate.

Each executive has three distinct components: mode
identifier, mode reconfigurer, and team sequencer. As
illustrated in Figure 4, the mode identifier combines
sensory information from the hardware with past
commands from the reconfigurer to estimate the system’s
state. The mode reconfigurer then takes the current state
estimate with a target mode from the team sequencer to
determine the next commands to pass to a robot’s
hardware drivers. Finally, the team sequencer
procedurally controls the identifier-reconfigurer-driver

sensors

sensors b
b

b

b
b

b
b

S

S

b SBehavior Behavior

actuators

actuators

planner

executive

controller

planner

executive

controller

shared activities

sensor inputs
behavior outputs

execution &
system state

feedback loop by providing target states to the
reconfigurer. At all times local mode identifiers maintain
state knowledge, and sequencers react to this information
by changing the target state.

While this architecture has been explored for single
agent systems using TITAN (Ingham et al. 2001), it has
yet to be cleanly extended to tightly coordinated teams.
This work makes the extension by developing techniques
for distributed mode identification, distributed mode
reconfiguration, and team sequencing. While these
techniques extend the sequencer, they replace the mode
identification and reconfiguration components to support
distributed computation and hard real-time performance
guarantees.

Figure 4. Component architecture of executive on each
robotic element, where team state information is kept
consistent across all elements.

Distributed Mode Management
By building off of the model-based description language
developed for DS-1’s Mode Identification & Recovery
(MIR) executive (Williams&Nayak 1997), we acquire a
representation for explicitly defining the interrelationships
between an agent team’s complete set of software and
hardware components. This facilitates reasoning about
how one component’s status affects the others’ and
ultimately sensor observations, which enables taking a set
of observations and inferring the team’s status. While
there are a number of constructs in the language, they all
support defining a network of typed components. These
components are defined in terms of how a component’s
modes constraint its port variables, and these constraints
are encoded using variable logic equations – Boolean
equations where the literals are variable equalities.

For instance, the following defines an extremely
simplistic system with two components for its robot arms.
In this system each arm command refers to a distinct
behavior. In this case an arm can be commanded to raise
and hold itself at the top or lower and hold itself at the
bottom. These behaviors are terminated to stop the arm
whenever some stress threshold is exceeded. The arm will
stay stopped until the sensed stress falls back below the

threshold, at which point the raise or lower behaviors can
be restarted

(defvalues ArmCmd (raise lower none))
(defvalues bool (T F))

(defcomponent Arm
 :ports ((ArmCmd cmd)(bool stress))
 :modes
((stalled)(stopped)(rising)(falling))
 :transitions
 ((* -> rising (:and (= stress F)
 (= cmd raise)))
 (* -> falling (:and (= stress F)
 (= cmd lower)))
 (* -> stalled (= stress T))
 (stalled -> stopped (= stress F))))

(defsystem rovers
 :sensors
 ((bool LArmAtTop)(bool LArmStress)
 (bool RArmAtTop)(bool RArmStress))
:affectors ((ArmCmd LArmCmd)
 (ArmCmd RArmCmd))

 :structure
 ((Arm RArm (RArmCmd RArmStress))
 (Arm LArm (LArmCmd LArmStress))))

Current model-based diagnosis techniques use some

variant of truth maintenance (Nayak&Williams 1997),
where components are translated into Boolean equations.
These techniques require collecting all observations into a
central place and then invoking heuristic algorithms to find
the most probable mode that agrees with the observations.
While some work has been done to distribute these
systems, their underlying algorithms cannot support hard
real-time guarantees by virtue of having to solve an NP-
Complete problem for each collection of observations.
While heuristics can make these algorithms fast on
average, the point is that they cannot guarantee
performance in all cases.

Instead of working with distributed truth
maintenance systems, we will take a simpler approach
suggested by knowledge compilation research. This
approach involves moving as much of the computation into
an off board compilation phase as possible to simplify the
onboard computation. Where previous systems take linear
time to compile a model and then possibly exponential
time to use the compilation to perform mode estimation,
our approach takes possibly exponential time to compile a
model into a decomposable negation normal form
representation and then linear time to perform mode
estimation with the equation.

Definition 1: A variable logic equation is in
Decomposable Negation Normal Form (DNNF) if (1) it
contains no negations and (2) the subexpressions under
each conjunct refer to disjoint sets of variables.

For instance, the two robot arm example compiles into
a tree-like structure in Figure 5, where the branch that is
local to the left arm is a mirror image to that for the right
arm.

Mode Identification Mode Reconfiguration

Team Sequencing

Team State

activities

commandsensors

updates

Current Mode &
Execution State

controlle

target states

Given that conjuncts have a disjoint branch variables
property, the minimal cost of a satisfying variable
assignment is just the cost of a variable assignment with
single assignment equations, the minimum of the
subexpression costs for a disjunct, and the sum of the
subexpression costs for a conjunct. With this observation,
finding the optimal satisfying variable assignments
becomes a simple three-step process:

1. associate costs with variable assignments in leaves;
2. propagate node costs up through the tree by either

assigning the min or sum of the descendents’ costs to
an OR or AND node respectively; and

3. if the root’s cost is infinity or some other value then
respectively return failure or descend from the root to
determine and return the variable assignments that
contribute to its cost.

For instance, Figure 5 illustrates the process of
determining that the right arm is stopped. First, observing
that RArmStress is false results in assigning values to the
RArmStress leaves, and the mode and command leaves get
costs related to the last known modes and commands.
Second, costs are propagated to the tree root. Third, the
root node’s cost is used to drill down to find the lowest
cost tree with the mode assignment (i.e. RAM1=stopped).

Figure 5. Computing the status of the right arm given past
sensor readings and commands is a matter of assigning leaf
values and then performing a MINSAT computation.

Finally, it turns out that that the generated DNNF can
also be used to compute the commands to reach a target
state given the currently estimated state (Barrett 2005).
This is because reconfiguration planning can also be
couched as a MINSAT problem and the only difference in
the planning and diagnosis algorithms involves how to
assign leaf costs. Where diagnosis assigns 0 and inf to
initial state and command/observation leaves to determine
the most likely final state, planning assigns 0 and inf to
initial and final state leaves to determine the least cost
commands to achieve the final state.

As Figure 5 suggests, the right arm’s executive only
gets a the piece of the DNNF to reason about the right arm
for diagnosis and reconfiguration planning. The
distribution of the DNNF starts with the sensors and
behaviors that an executive can see and control. These
point to leaves of a DNNF that are local to the executive.
At this point internal nodes are assigned to a local
executive when they only point to leaves or parents
assigned to that executive. All other nodes are assigned to
the team state. In the two arm example the assignment
resulted the rightmost “and” being placed in the team state.

Procedural Control
The distributed onboard sequencer is based both on the
Reactive Model-based Programming Language (RMPL)
(Williams et al. 2001) and a model of flexible teamwork
(Tambe 1997) developed within the distributed artificial
intelligence community. Flexible teamwork is more than a
union of agents’ simultaneous execution of individual
plans, even if such plans have explicit coordination
actions. Uncertainties often obstruct pre-planned
coordination, resulting in corresponding breakdowns.
Flexible teamwork involves giving agents a shared team
plan and a general model of teamwork. Agents then exploit
this model and plan to autonomously handle coordination
and communication, providing the flexibility needed to
overcome emerging unexpected interactions caused either
by slight timing delays or anomalies.

RMPL raises the level at which a control programmer
thinks about robotic systems. Instead of reasoning about
actuators, sensors, and hardware, a RMPL programmer
thinks in terms of controlling a system through a sequence
of configurations. Thus a control program is written at a
higher level of abstraction, by asserting and checking
states which may not be directly controllable or
observable.

As an example of the rich types of behavior that an
RMPL control programmer can encode, the control
program below shows a simplistic approach toward
defining an activity that gets two rovers to jointly lift a bar.
It performs the task by commanding the robot arms into a
rising mode whenever they are stopped, and then stopping
when one of the robots senses that its arm is at the top
position. While only partially shown in this simplistic
example, RMPL code can express numerous types of
behavior including iteration, conditional branching,
concurrent tasks, and preemption.

(defactivity liftBar ()
 (do (parallel
 (whenever (= RArm.Mode stopped)
 donext (= RArm.Mode rising))
 (whenever (= LArm.Mode stopped)
 donext (= LArm.Mode rising)))
 watching (:or (= LArmAtTop T)
 (= RArmAtTop T))))

The formal semantics of RMPL has been defined in
terms of Hierarchical Constraint Automata (HCA), where

[RAM1=stopped]
[RAM0=stopped]

[RAM0=rising]
[RAM1=rising]

[RAM1=falling]

[RArmStress0=F]

[RAM0=falling]

[RArmCmd0=none]

[RArmCmd0=raise]

[RAM0=stalled]

 [RArmStress0=T]
 [RAMode1=stalled]
[RArmCmd0=lower]

and

and

and

and

and

and

and

and

or

or

0 :
0 :

inf :
0 :
0 :

inf :
0 :

inf :
inf :
0 :

inf :
0 :

inf :

and

local to
left arm

the nesting of automata directly corresponds to the nesting
of RMPL constructs. For instance, Figure 6 has the HCA
for our example, where the outer and two inner boxes
respectively correspond to the do-watching and the
two whenever-donext constructs.

Figure 6. Hierarchical constraint automaton (HCA) for two
robot arms lifting a bar, where LAAT, RAAT, LAM, and
RAM respectively denote LArmAtTop, RArmAtTop,
LArm.Mode, and RArm.Mode.

Unlike standard automata, multiple locations in an
HCA can be marked. When marked a location stays
marked until its target state (if any) has been reached. At
which point the mark gets replicated zero or more times
over arcs that have true conditions. For instance, the two
left locations lack target states, but stay marked by virtue
of the loop arcs. When a robot arm stops, the appropriate
arc is enabled and the arm’s target state becomes ‘rising’.
This continues until the Maintain() fails and erases the
entire automaton, reflecting the do-watching construct.

In general, an HCA corresponds to a tree of parallel
processes whose execution follows the following routine.
As this algorithm shows, a location is a simple process that
asserts a target state and exits upon reaching that state or
being aborted from above. Higher level HCAs manage
child components and cannot be restarted until exiting.

 Process Execute(HCA)
 If HCA is a location
 Assert target state until target reached
 Else
 For each initial child component M
 Start Execute(M)
 Repeat
 If the Maintain() condition fails then
 Abort each active child component
 For each child component M that exits

 For each transition M ⎯→⎯C N in HCA
 If C holds and N is not executing then
 Start Execute(N)
 Until no more child components are executing
 Exit

From a representational standpoint, team plans are

similar to any other hierarchical plan. The only syntactic
addition to turn a hierarchical plan into a team plan
involves defining teams to perform activities and assigning

roles to teammates. More precisely, injecting teamwork
modeling into an existing hierarchical plan execution
system involves adding three features (Tambe 1997):

• generalization of activities to represent team
activities with role assignments;

• representation of team and/or sub-team states; and
• restrictions to only let a teammate modify a team

state.

The key observation underlying the use of RMPL is
how the language’s approach to defining a control program
as an HCA naturally matches the approach to defining a
team plan with a model of flexible teamwork. Team plans
are hierarchically defined in terms of sub-plans and
primitive actions, where each teammate is assigned a role
consisting of a subset of the sub-plans and actions.
Returning to the our example, the Maintain() is a team
HCA with components that are local HCAs for each rover.
Thus the right hand rover need only address the
components of Figure 7, and the two rovers need only
communicate to be consistent over the team’s Maintain()
condition. The condition tells the rovers when to
collectively abort their HCAs. In general, agents only
need to communicate when a team level automaton
changes its active components or some property of its
Maintain() condition changes. Changes in a local HCA’s
components can be hidden.

As the example implies, all that we need to know to
distribute an RMPL procedure is the distribution of mode
variables and sensors. Since mode variable assignments
were determined by DNNF distribution, the distribution of
local and team HCAs follows from sensor and behavior
distribution. Thus an RMPL programmer does not have to
worry about synchronization issues across multiple agents.
The underlying model of flexible teamwork will robustly
manage these issues by keeping team state information
consistent among the closely coordinated population of
agents. The association of RMPL procedures to one or
more robots similarly follows from the HCA distribution,
and since RMPL procedures are used to implement plan
activities, the distribution permeates to determining the
local activities that a robot has which robots participate in
which team activities.

Figure 7. What the right-hand arm only executes those
HCAs that refer to states and sensors local to the right arm.

Maintain(LAAT=T||RAAT=T)

RAM=stopped
RAM ← rising

LAM=stopped
LAM ← rising

Maintain(LAAT=T||RAAT=T)

RAM=stopped
RAM ← rising

Local to the left rover

Distributed Continual Planner
The need to rapidly respond to unexpected events
motivates continuous planning, an approach where a
planner continually updates a sequence in light of
changing operating context. In such an operations mode, a
planner would accept and respond to activity and state
updates on a one to ten second time scale. CASPER
(Chien et al. 2000) is an example of a continuous planner
based on a heuristic iterative repair approach toward
planning (Zweben et al. 1994, Fukunaga et al. 1997). This
approach takes a complete plan at some level of abstraction
and manipulates its actions to repair detected flaws.
Example flaws would involve an action being too abstract
to execute or many simultaneous actions with conflicting
resource needs.

Extending the CASPER continual planning framework
to perform continual iterative repair within the
planner/scheduler modules results in the distributed
CASPER continual planning algorithm illustrated in Figure
8. Essentially the algorithm manipulates the activities in
PLAN to get rid of detected problems in PROECTION,
and a window sweeps over the plan from left to right over
to determine which near term activities to pass to the
executives. While some activities are local, others are
shared and must be kept identical across multiple planners.

Figure 8. Two CASPER continuous planners that reason
about an intersecting set of activities for two robots, where
the intersection activities must be kept identical as the
planners manipulate their plans.

More precisely, the algorithm is a continuous look of
the seven steps below, where a mission manager can insert
new goal activities into PLAN. Line 1 makes the
PROJECTION variable (containing state variable profiles)
always reflect how the spacecraft’s state should evolve as
its plan executes, and the sixth line causes this execution
by passing near-term activities to the executive/diagnos-
tician.

The expected state evolution changes as a plan gets
new goal activities and the perceived state diverges from
expectations. This divergence is caused by unexpected
exogenous events and activities having unexpected

outcomes. Since a planning model can only approximate
the reality experienced during execution, these unexpected
state changes can always happen. Thus revising
PROJECTION can result in detecting flaws in a local plan
at any moment, and lines 2 through 4 select and apply
repair methods to fix these flaws. For instance, a satellite
observation can take an unexpectedly long time to
complete. Depending on the delay, a later observation
may be impossible due to the target being too far behind
the satellite when the observation starts. A repair method
might fix the flaw by rescheduling the observation at a
later time.

While changes to local activities can remain private to
a single spacecraft, changes to shared activities must be
made public, and line 5 communicates these changes. In
general, the use of CONSTRAINTS and flaw repair
methods can implement a number of coordination
strategies. To be more concrete, suppose that a repair
method suggests changing the start time of a shared
activity. After changing the activity's startTime variable,
the spacecraft has to inform other participating spacecraft
of the change. In this way the spacecraft can follow an
asynchronous weak commitment (AWC) (Yokoo&
Hirayama 1998) search approach to maintaining plan
coordination.

Distrubuted CASPER continual planning process
Given: a PLAN with multiple local and shared activities
 a PROJECTION of PLAN into the future
 a set of CONSTRAINTS on shared activities

1. Revise PROJECTION using the currently perceived

state, new goal activities from a mission manager, and
received changes to shared activities.

2. Heuristically choose a plan flaw in PROJECTION.
3. Heuristically choose a flaw repair method that honors

CONSTRAINTS.
4. Use method to alter CONSTRAINTS, PLAN, and

PROJECTION.
5. Communicate changes to shared activities in PLAN

and CONSTRAINTS.
6. Release relevant near-term activities in PLAN to the

executive.
7. Go to 1.

More precisely, the AWC approach, which is central

to our architecture for managing shared activities, involves
agents asynchronously assigning values to their variables
from domains of possible values, and communicating the
values to neighboring agents with shared constraints. Each
variable has a non-negative integer priority that changes
dynamically during search. A variable is consistent if its
value does not violate any constraints with higher priority
variables. A solution is a value assignment in which every
variable is consistent.

To simplify describing the algorithm, suppose that
each agent has exactly one variable and constraints
between variables are binary. When an agent’s variable
value is not consistent with neighboring variable values,

activities activities

PLAN

PROJECTION

there can be two cases: (i) good case where there exists a
consistent value in the variable’s domain; (ii) nogood case
that lacks a consistent value. In the good case with one or
more value choices available, an agent selects a value that
minimizes conflicts with lower priority agents – the min-
conflict heuristic. On the other hand, in the nogood case,
the priority of the agent is increased to max+1, where max
is the highest priority of neighboring agents. In this
approach, a bad value selection by a higher agent make
does not force lower agents to exhaustively search for local
solutions; nogood situations locally increase a priority to
make previously higher agents choose new values.
Furthermore, an increasing agent sends a nogood message
with its agentView (the values and priorities of
neighboring agents). These messages are used to avoid
repeating past situations where an agent has no consistent
values in its domain. Extension of AWC to multiple
variables per agent has been investigated in (Yokoo and
Hirayama 1998).

Related Work
Since distributed autonomy is an active field, a complete
list of related systems would fill a tome, which forces me
to be incomplete here. The most obviously related work is
that by Simmons et al. (2002) in that it puts three layers on
each robot and components at each layer communicate
with each other, but their approach does not focus on
characterizing the population of robots as a single entity
and lacks a model-based approach toward mode
estimation. On the other hand they include a capability
server that enables adding robots to a population at any
time, a feature that this approach currently lacks.

The closest related work on distributed sequencing of
teams comes from STEAM (Tambe 1997) and TPOT-RL
(Stone 1998). These two systems address teams of tightly
coordinated agents that can fail, but they are based on rule-
based approaches that lack system models to facilitate
principled approaches to planning, mode estimation, and
failure response.

Most other systems focus either on emergent
behaviors of multiple closely coordinating behavioral
agents or planned behaviors of loosely coordinated agents.
Since this work involves planned behaviors of robots with
varying levels of coordination, I will focus on such
systems here.

Conclusions
This paper presents a model-based executive for
command-ing teams of agents. It works by letting an
operator define and command the team as a single entity
with a single controlling CPU. A compiler then distributes
the control functions guided by a specification assigning
system components (sensors and actuators) to team
members.

Each component of this system exists in isolation.
CASPER is a very mature continual planner that has flown
on the EO1 satellite, and SHaC (Clement&Barrett 2003) is
an existing system for coordinating distributed planners
based on shared activities that has been tested in
simulation. The distributed executive (Barrett 2005) also
has also been tested in simulation. Finally, the
CAMPOUT distributed feedback controller (Pirjanian et
al. 2001) has been tested on a variety of tasks from
cooperative transport of a beam to cooperatively rappelling
over a cliff. While each component of the system exists,
the full integration of them has yet to occur.

Finally, humans may interact with the distributed
autonomy system at each of the three levels: planner,
executive, and feedback controller. At the feedback
controller level, one of the sensors in figure 3 might be a
human actuated joystick, giving the human tight control of
low level behaviors. At the executive level a human might
directly request the execution of a team procedure or
perform assigned elements of procedures like any other
agent. At the plan level, a human might manipulate shared
activities that are subsequently altered in the planners on
other agents. Thus from lowest to highest, each level has
its mode of interaction, joy sticking to tactical to strategic.

Acknowledgements
This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with
the National Aeronautics and Space Administration. The
author would also like to thank Seung Chung, Adnan
Darwiche, Daniel Dvorak, and Mitch Ingham for
discussions contributing to this effort

References
A. Barrett. “Model Compilation for Real-Time Planning

and Diagnosis with Feedback.” Proceedings of the
Nineteenth International Joint Conference on Artificial
Intelligence. 2005.

S. Chien, R. Knight, A. Stechert, R. Sherwood, and G.
Rabideau, “Using Iterative Repair to Improve
Responsiveness of Planning and Scheduling,”
International Conference on Artificial Intelligence
Planning and Scheduling, 2000.

B. Clement and A. Barrett. “Continual Coordination
through Shared Activities.” Proceedings of AAMAS-
2003, Melbourne, Australia, July 2003.

A. Fukunaga, G. Rabideau, S. Chien, D. Yan 1997.
“Towards an Application Framework for Automated
Planning and Scheduling,” In Proceedings of the 1997
International Symposium on Artificial Intell-igence,
Robotics and Automation for Space, Tokyo Japan.

E. Gat. On three-layer architectures. In D. Kortenkamp, R.
P. Bonnasso, and R. Murphy, editors, Artificial
Intelligence and Mobile Robots. MIT/AAAI Press, 1997.

M. Ingham, R. Ragno, B. C. Williams. “A Reactive
Model-based Programming Language for Robotic Space
Explorers,” Proceedings of iSAIRAS-2001, St-Hubert,
Canada, June 2001.

P. Nayak and B. C. Williams. “Fast Context Switching in
Real-time Propositional Reasoning,” Proceedings of
AAAI-97, Providence, RI, 1997.

P. Pirjanian, T. Huntsberger, A. Barrett. “Represent-ing
and Executing Plan Sequences for Distributed Multi-
Agent Systems.” Proceedings of IROS-2001, Maui, HI,
October 2001.

R. Simmons, T. Smith, M. B. Dias, D. Goldberg, D.
Hershberger, A. Stentz, R. Zlot, “A Layered
Architecture for Coordination of Mobile Robots”, in
Multi-Robot Systems: From Swarms to Intelligent
Automata, A. Schultz and L. Parker (eds.), Kluwer,
2002.

P. Stone.. Layered Learning in Multi-Agent Systems: A
Winning Approach to Robotic Soccer, MIT Press,
Cambridge, MA 1998.

M. Tambe, “Towards Flexible Teamwork.” Journal of
Artificial Intelligence Research, Volume 7. 1997.

B. C. Williams and P. Nayak. “A Model-based Approach
to Reactive Self-Configuring Systems.” Proceedings of
AAAI-96, Portland, OR, August 1996.

B. C. Williams, S. Chung, V. Gupta. “Mode Estimation of
Model-based Programs: Monitoring Systems with
Complex Behavior” Proceedings of IJCAI-2001, Seattle,
WA, 2001.

M. Yokoo and K. Hirayama, “Distributed Constraint
Satisfaction Algorithm for Complex Local Problems,”
International Conference on Multi-Agent Systems, 1998.

M. Zweben, B. Daun, E. Davis, and M. Deale, “Scheduling
and Rescheduling with Iterative Repair,” in Intelligent
Scheduling, Morgan Kaufman, San Francisco, 1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

