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Abstract
While universal plans tell a system how to reach a goal
regardless of what state it is in, such plans are typically
too large to represent. Hybrid systems execute plans
where each action is implemented to robustly produce
effects if the world does not stray outside the action’s
control envelope. This paper presents a middle ground
between these two extremes that uses plans, but also
enables much larger control envelopes using a real-time
planner that finds optimal n step plans to achieve a set of
goals if one exists.

Introduction

Ever since discovering that SHAKEY lacked the speed
needed to deal with the real world (Brooks, 1999), the
robotics community has endeavored to develop more
responsive systems based either on universal plans or
hybrid planners and executives. In the case of universal
plans, researchers merge a set of behaviors into a
universal plan, but the system must be restricted to
relatively small problem domains to avoid having to
reason about too many states and represent them in the
universal plan. The hybrid approach avoids the problem
by implementing activities as small sets of behaviors
with limited applicability and then using a planner to
string these actions together into an action sequence to
traverse the system’s state space from the current initial
conditions to a goal state. This approach works well in
static environments, but it is inherently brittle when
addressing a dynamic world that can easily cause a
failure by escaping an action’s region of applicability.

This paper presents a middle ground between these two
extremes, where a system can vary from the hybrid
approach to a universal plan depending on a single
integer parameter. As illustrated in Figure 1, the
parameter starts at 1 to denote the hybrid approach where
each linked action has a small coverage of the state
space. As the parameter increases, the system’s state-
space coverage associated with reaching each subgoal
grows from the subgoal’s associated action until some
domain dependent value M is reached, where the system
contains a universal plan.

By using an embedded real-time planner that enables this
middle ground, a hybrid system can become much more
robust to a dynamic environment. Such a system
operates by having a planner pass the current subgoals
instead of activities to an executive. The executive then

uses the real-time planner to determine when to perform
which action until either satisfying the current subgoals
or determining that they cannot be reached within n
steps. While the first case signals success and the system
continues by giving new subgoals to the executive, the
second signals failure and the planner will have to alter
its activity sequence to resolve the problem.

This paper starts by describing a universal(n) plan as a
parameterized generalization of a universal plan. The
next section shows how to compile a domain into a
universal(n) plan. Given such a structure, the fourth
section shows how it takes O(structure size) time to
determine the next actions to take given the current state
and subgoals if there can exist an n step plan to reach the
subgoals. Subsequent sections present empirical results,
and conclude.

Universal(n) Plans

Ever since discovering the performance limitations of
taking a sense-plan-act approach to controlling robots,
the robotics community has endeavored to develop
behavior-based approaches where a behavior implements
a rapid feedback loop between state estimation and
motor control. While this works well for simple tasks,
like controlling robots with simple activity cycles on a
factory assembly line, it gets much more complicated
when controlling robots that have to flexibly react in an
unstructured environment. This difficulty arises from the
resulting complexity in selecting/coordinating the
activation of possibly conflicting behaviors. From the
action arbitration circuits in Pengi (Agre and Chapman,
1987) to the universal plan on EVAR (Schoppers, 1995)
and the command arbiter of DAMN (Rosenblatt,
Williams, and Durrant-Whyte, 2002), controlling and
fusing behaviors becomes progressively harder as the
target system faces progressively more unstructured
environments.
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As illustrated in Figure 2, the typical hybrid approach
attempts to resolve the complications of developing a
behavior selector/coordinator by replacing it with a
planner. The planner determines an action schedule that
maps a path from the current situation to a goal state, and
this action schedule is used to incrementally determine
when to activate which action behaviors in order to
achieve the goal state. Since action behaviors are much
more limited than a global behavior, actions can fail
when environmental conditions evolve to a situation not
covered by their corresponding action behaviors. In such
cases a failure signal tells the planner to search for an
alternative action schedule. Since replanning is
computationally intensive, any low overhead way to
reduce failure signals results in a more responsive
system.

The approach presented here reduces the number of
failure signals by inserting a relatively limited real-time
action selector between the planner and behaviors (see
Figure 3). This approach only signals failure when the
action selector fails to find the appropriate action for the
current situation, and the action selector is guaranteed to
resolve a failure if it can be resolved within n steps,
where n is a user specified parameter. This guarantee is
facilitated by evaluating a universal(n) plan against the
current situation and subgoals.

Definition 1: A universal(n) plan is a structure that can
be evaluated in linear time to generate an optimal n
level plan to reach any set of goals from any current
situation if such a plan exists.

Universal(n) plans are more general than universal plans
by virtue of their not being tied down to a specific end
goal. They are more restricted than universal plans by
virtue of the n level requirement, where a level is any
number of simultaneous non-interacting actions. As a
user increases n, the universal(n) plan becomes less
restrictive until reaching some domain dependent value
M – where there is a guarantee that an goal can be
reached from any situation with an M level plans. In
practice n is kept relatively small because universal(n)
plans tend to grow rapidly with n.

Compiling Domains

The approach to generating universal(n) plans presented
here is a two step process. Step one utilizes results from
developing SATPLAN (Kautz and Selman, 1992) to
convert a domain into conjunctive normal form (CNF)
whose satisfaction solves an n-level planning problem,
and step two utilizes results from research on knowledge
compilation (Darwiche and Marquis, 2002) to convert
the CNF representation into Decomposable Negation
Normal Form (DNNF). It turns out that this form of
logical expression can be evaluated in linear time to
compute an optimal n level plan.

To make this more concrete, consider the following
simple two-operator domain that moves a system
between states a and b. Each operator has a
precondition that the variable at has the value a or b
and an effect that assigns the value b or a respectively.

(make-op :name do[a->b]
:prec (at=a) :post (at=b))

(make-op :name do[b->a]
:prec (at=b) :post (at=a))

This state variable approach to representing a domain
was motivated by the fact that most NASA planning
domains represent spacecraft in terms of state variables,
depletable resources like propellant, and nondepletable
resources like electric power. It also mirrors the SAS+
domain language (Jonsson and Bäckström, 1994) with
known complexity results.

Domains to CNF
In SATPLAN generating a CNF encoding of an n-level
planning problem is fairly straightforward. There are
actually several possible encodings (Ernst, Millstein, and
Weld, 1997). The encoding used here has a boolean
variable for each ‚action, levelÚ tuple and an enumerated
variable for each ‚state variable, levelÚ tuple, where there
are n action levels and n+1 state levels. The generation
of the CNF derives from an observation that executing
an action at level i implies that the action’s preconditions
hold at level i and its effects hold at level i+1. Also, not
executing an action that affects a variable at level i
implies that the variable’s value persists to level i+1.
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Figure 2. Comparing a universal plan (a) with a
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For instance, suppose that n=2 when compiling the
example domain. The variable logic encoding, where all
literals are variable assignments, of the planning problem
appears below, where variable levels are reflected in
subscripts. Notice that the first disjunct refers to the fact
that the variable at persists from level 1 to 2 if neither
of the two actions are performed at level 1. The second
and third disjunct reflect the implications of executing
one of the two listed operators at level 1 respectively.
The last three disjuncts respectively mirror the first three,
but for level 0 instead of 1.

(and
(or do[b->a]1=t do[a->b]1=t

(and at1=a at2=a)
(and at1=b at2=b))

(or do[a->b]1=f (and at1=a at2=b))
(or do[b->a]1=f (and at1=b at2=a))
(or do[b->a]0=t do[a->b]0=t

(and at0=a at1=a)
(and at0=b at1=b))

(or do[a->b]0=f (and at0=a at1=b))
(or do[b->a]0=f (and at0=b at1=a)))

As the example implies, the variable logic encoding
grows linearly with n. In this case, the number of
disjuncts would be three times n. In general the number
of disjuncts is n(|O|+|V|), where |O| and |V| are the
domain’s number operators and state variables
respectively. Also, since each level is a set of disjuncts,
the CNF that derives from the variable logic encoding
only grows linearly with n. This size complexity is
typical for a SATPLAN encoding.

Once the initial variable logic equation is expanded into
CNF, removing disjuncts that are subsumed by other
disjuncts reduces the result. It turns out that a disjunct
subsumes another if its variable assignments are a subset
of the other disjunct’s variable assignments. This subset
property implies that any satisfaction of the first disjunct
satisfies the second.

CNF to DNNF
Unfortunately finding a minimal satisfying assignment to
a CNF equation is an NP-complete problem, and more
compilation is needed to generate a universal(n) plan.
Since a DNNF equation can be evaluated in linear time,
the second step converts the CNF to DNNF to represent
a universal(n) plan. DNNF has been defined previously
in terms of a boolean expression where only literals are
negated and the literals appearing in sub-expressions of
an conjunct are disjoint. The following definition
slightly extends Boolean DNNF to variable logic
equations, where the negation of a variable assignment
has been replaced by a disjunct of all other possible
assignments to that same variable.

Definition 2: A variable logic equation is in
Decomposable Negation Normal Form if (1) it
contains no negations and (2) the subexpressions under
each conjunct refer to disjoint sets of variables.

Just as in the boolean case, there are multiple possible
variable logic DNNF expressions equivalent to the CNF
and the objective is to find one that is as small as
possible. Since Disjunctive Normal Form is also DNNF,
the largest DNNF equivalent is exponentially larger than
the CNF. Fortunately much smaller DNNF equivalents
can often be found. The approach here mirrors the
Boolean approach to finding a d-DNNF by first
recursively partitioning the CNF disjuncts and then
traversing the partition tree to generate the DNNF.

The whole purpose for partitioning the disjuncts is to
group those that refer to the same variables together and
those that refer to different variables in different
partitions. Since each disjuncts refers multiple variables,
it is often the case that the disjuncts in two sibling
partitions will refer to the same variable, but minimizing
the cross partition variables dramatically reduces the size
of the DNNF equation. This partitioning essentially
converts a flat conjunct of disjuncts into an equation tree
with internal AND nodes and disjuncts of literals at the
leaves, where the number of propositions appearing in
multiple branches below an AND node is minimized.

Mirroring the boolean compiler, partitioning is done with
by mapping the CNF equation to a hyper-graph, where
nodes and hyper-arcs respectively correspond to
disjuncts and variables. The nodes that each hyper-arc
connects are determined by the disjuncts where the
hyper-arc’s corresponding variable appears. Given this
hyper-graph, a recursive partitioning using a
probabilistic min-cut algorithm (Wagner and Klimmek,
1996) computes a relatively good partition tree for the
disjuncts. See Figure 4 for an extremely simple example
with two disjuncts and three variables. From the
equation tree perspective, there is an AND node on top
above disjuncts at the leaves. The branches of the AND
node share a variable b, which is recorded in the top
node’s Sep set.

Once the equation tree is computed, computing the
DNNF involves extracting each AND node’s associated
shared variables using the equality

where eqn\{v=c} is the equation generated by replacing
disjuncts containing v=c with True and removing
assignments to v from other disjuncts. If a disjunct ever
ends up with no assignments, it becomes False.

(or a=f b=t) (or b=f c=t)

AND
Sep = {b}

partition

(and (or a=f b=t) (or b=f c=t)

a b c

Figure 4. Example of partitioning a CNF equation
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More formally, the DNNF equation is recursively
defined using the following two equations, where the
first and second equations apply to internal and leaf
nodes respectively. In the first equation
instances(N.Sep,a) refers to the set of variable
assignments to variables in N.Sep that are consistent with
a. For instance, running these equations over Figure 4’s
partition starts by calling dnnf(root,True), and the
instances are b=t and b=f since the root only has b in
Sep, and both assignments agree with True. In general
the number of consistent instances grows exponentially
with N.Sep, leading to the use of min-cut to reduce the
size of N.Sep for each partition.

While walking the partition does provide a DNNF
equation that can be evaluated in linear time, two very
important optimizations involve merging common sub-
expressions to decrease the size of the computed
structure and caching computations made when visiting a
node for improving compiler performance (Darwiche,
2002). With respect to Figure 4, there were no common
sub-expressions to merge, and the resulting DNNF
expression appears below.

(or (and b=t c=t) (and b=f a=f))

Evaluating DNNF

To illustrate a less trivial DNNF expression, consider the
universal(2) plan for the example two operator domain
(see Figure 5). This expression’s the top rightmost AND
node has two children, and each child refers to a unique
set of variables. From top to bottom these disjoint sets
respectively are

{at2, do[b->a]1} and {at0, do[a->b]0}.

Given that AND nodes have a disjoint branches property,
finding optimal satisfying variable assignments becomes
a simple three-step process:

1. associate costs with variable assignments in leaves;

2. propagate node costs up through the tree by either
assigning the min or sum of the descendents’ costs
to an OR or AND node respectively; and

3. if the root’s cost is 0, infinity, or some other value
then respectively return default assignments, failure,
or descend from the root to determine and return the
variable assignments that contribute to its cost.

When evaluating a universal(n) plan, a cost is assigned to
each variable using a number of planning dependent
preferences. First, not performing an action has zero
cost. This results in associating zero with all leaves that
set an action variable false. Second, performing required
actions earlier is preferred. This results in associating

lower costs with leaves that set lower level action
variable true. In Figure 5 the values five and ten were
associated with these leaves. In general the values can
be both level and operator dependent for optimal
planning. Third, the current state determines the costs
associated with level 0 state variable assignments. While
leaves with assignments corresponding to the current
state have zero cost, leaves with assignments
contradicting the current state have infinite costs.
Finally, associated costs of top-level variables similarly
depend on the current subgoals. Assignments consistent
with the subgoals have zero costs, and assignments
contradicting subgoals have infinite costs.

Figure 5 gives a detailed trace of evaluating a
universal(2) plan for the simple move domain. The leaf
costs are first computed using the planning preferences,
and the results appear in the left hand column. Cost
propagation then progresses through the tree, and the
propagated cost associated with a node appears above it.
Finally the descent from the root is a simple matter of
comparing its cost with the cost of its immediate
children. In this case the current state and goal were
at=a and at=b respectively. Upon evaluating the
universal(2) plan, do[a->b] is identified for execution.

While Figure 5 does display a universal(2) plan for the
example domain, it is not precisely the DNNF equivalent
to the previously listed variable logic encoding. It does
not have any leaves corresponding to assignments to
state variables at level 1 or false assignments to action
variables. It turns out that these leaves can be safely
omitted. An earlier incarnation of the compiler kept
them, but the evaluation finds a plan when associating
zero costs with leaves corresponding to false action
variable assignments or intermediate state variable
assignments. Given this, the leaves were omitted to
reduce structure size by 25% on average.

Empirical Results

Both the compiler and evaluator are prototyped in fewer
than 400 and 100 lines of allegro common lisp

)( ),(),(
.),.instance(

βαβα
αβ

∧∧≡
∈∈
∧∨ cdnnfNdnnf

kidsNcSepN








¬⇒⊃∃

⇒
≡

¬⇒∈
∨

Otherwise

if

if

),(
&

βαβ
α

βα
βαβ

disj

False

True

disjdnnf
disj

Figure 5. Evaluating a universal(2) plan when the
current state is at=a and the current subgoal is
at=b

at2=b

at2=a

do[b->a]1=t

at0=b

at0=a

do[a->b]0=t

at2=a

at2=b

do[a->b]1=t

at0=a

at0=b

do[b->a]0=t

0:

•:

10:

•:

0:

5:

•:

0:

10:

0:

•:

5:

0

.•
,

5

.5

,

5

,

10

.10

,
0

.•
,

10

,

5

.



5

respectively – shorter than this paper. For testing
purposes a number of simple domains were encoded and
compiled for varying numbers of levels. To give a first
glimpse of how large universal(n) plans can get, consider
Table 1. There are seven different domains with varying
numbers of operators and state variables, and each
domain was used to generate universal(n) plans where n
varied from one to four. As the experiments imply, the
number of nodes rapidly grows with n, but not nearly as
rapidly as the number of possible n-level plans to
consider. In the case of universal(4) for a 3-block
blocksworld problem, there were 4155 nodes, but there
were also 184 or 104976 different 4 action sequences if
only one action is allowed per level. The number is even
larger for arbitrary numbers of actions per level. Thus
the DNNF representation of universal(n) plans is much
more compact than listing all possible n or fewer level
plans.

Even with this compactness, more research is needed to
address the scaling issue. While universal(n) plan size
grows exponentially with variables, operators, and n in
each example, all of the examples had highly interacting
state variables and operators. There was less interaction
in the Wkshop domain and that apparently lead to a
slower universal(n) plan growth. For fully independent
systems the universal(n) plan grows linearly with the
number of systems.

Future Work

While the system succeeds in computing universal(n)
plans and evaluating such structures in linear time to
provide optimal n level plans, there are many avenues for
future research. First, universal(n) plans tend to grow
rapidly with n, but there are techniques for reducing
structure size. While identifying and extracting zeroed
leaves reduces the size by 25% on average, extra
optimizations are possible. For instance, M=1 for the
example domain, but Figure 5 had a universal(2) plan.
Close inspection of this structure results in a discovery
that the action nodes with cost 10 (i.e. the higher level
action variables) are never selected, and can thus be
removed from the structure. How to algorithmically
perform this optimization is still undetermined. Also, the
DNNF returned by the compiler has a varying size due to
using a probabilistic min-cut algorithm. This implies
that there is no guarantee that the compiler is actually
generating the optimal DNNF equation.

Another avenue of research involves generating
universal plans instead of universal(n) plans. If the

action level width M of the state space is known, the first
intermediate logic equation generated from the domain
and M can be altered to insert the universal plan goal in
terms of a conjunct of assignments to top-level state
variables. This conjunct will actually simplify the
generated DNNF equation and evaluating this equation
generates the optimal n level plan in linear time.

A third avenue of research derives from an observation
that there are DNNF based knowledge compilation
results for the model-based diagnosis problem
(Darwiche, 1998). Combining these results with work in
this paper results in a generalization of the Livingstone
executive (Williams and Nayak, 1996) that was flown on
Deep Space 1. In this case the resulting evaluation
engine is only 100 lines long and the diagnosis and
recovery mechanisms are compiled into the DNNF
structure. Both of these components are much easier to
validate than the code used to implement Livingstone
and reason about its models.

A fourth avenue of research revolves around distributed
execution. It turns out that using DNNF structures
facilitates distributing diagnosis reasoning across
multiple agents (Chung and Barrett, 2003). The same
should hold for distributing an action selector. The main
source of complexity is the need alter the compiler to
find acceptably small DNNF structures that group state
reasoning and action selection components by agent in
order to reduce cross agent communication. Also, the
evaluation routine needs to be distributed in such a way
that momentary communication losses do not fatally
impact execution. The current evaluation approach of
propagating costs to the root and then drilling down to
find the sources of the minimum cost would be fatally
impacted by intermittent communication loss.

Finally, more open-ended research directions include
expanding the system to handle metric resources, time,
exogenous events, uncertainty, and other representational
enhancements. Conditional effects of actions can be
encoded as

(or actioni=f (not conditioni) effecti+1),

where condition and effect are from the conditional effect
of action. Metric resources can also be included by
noting how they restrict the sets of actions that can be
performed simultaneously at a level of the universal(n)
plan.

Conclusions

This paper presented a knowledge-compilation based
approach to implementing an offline domain compiler
that enables an embedded real-time planner for a more
robust plan execution system. Past approaches either
focused on generating universal plans or developing
tools for implementing more robust action behaviors
(Williams and Gupta, 1999) (Simmons and Apfelbaum,
1998). While the offline compiler can turn the
embedded real-time planner into a universal plan, it can
avoid the space requirements of a universal plan by
generating a smaller universal(n) plan. With such a

Table 1. The number of nodes in universal(n) plans for
varying domains

Domain vars ops n=1 n=2 n=3 n=4
Robot 3 4 40 59 89 115
Refuel 4 7 58 82 163 282
Coffee 4 8 73 208 568 1102
Wkshop 5 9 94 239 428 718
3blocks* 6 12 226 1156 1960 2799
3blocks 6 18 491 1898 3006 4155
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structure, the embedded real-time planner can determine
n-level plans to achieve any set of goals from any current
state if such a plan exists. This enhances work on
making action behaviors more robust by enabling rapid
changes in action selection as the environment evolves.
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