
universal plan
n = M middle ground

1 < n < M
hybrid system

n = 1

Figure 1: Parameterized state-space coverage – from a
hybrid system to a universal plan

GG II G

From Hybrid Systems to Universal Plans via Domain Compilation

Anthony Barrett

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive, M/S 126-347
Pasadena, CA 91109-8099

anthony.barrett@jpl.nasa.gov

Abstract
While universal plans tell a system how to reach a goal
regardless of what state it is in, such plans can be too large
to represent. Hybrid systems execute plans where each
action is implemented to robustly produce effects if the
world does not stray outside the action’s control envelope.
This paper presents a middle ground between these two
extremes that uses plans, but also enables much larger
control envelopes using a real-time planner that finds
optimal n step plans to achieve a set of goals if one exists.

Introduction
Ever since discovering that SHAKEY lacked the speed
needed to deal with the real world (Brooks 1999), the
robotics community has endeavored to develop more
responsive systems based either on universal plans or
hybrid planners and executives. In the case of universal
plans, researchers merge a set of behaviors into a universal
plan, but the system must be restricted to relatively small
problem domains to avoid having to reason about too many
states and represent them in the universal plan. The hybrid
approach avoids the problem by implementing activities as
small sets of behaviors with limited applicability and then
using a planner to string these actions together into an
action sequence to traverse the system’s state space from
the current initial conditions to a goal state. This approach
works well in static environments, but it is inherently
brittle when addressing a dynamic world that can cause a
failure by escaping an action’s region of applicability.

This paper presents a middle ground between these two
extremes, where a system can vary from the hybrid
approach to a universal plan depending on a single integer
parameter. As illustrated in Figure 1, the parameter starts
at 1 to denote the hybrid approach where each linked
action has a small coverage of the state space. As the
parameter increases, the system’s state-space coverage
associated with reaching each subgoal grows from the

Copyright © 2004, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

subgoal’s associated action until some domain dependent
value M is reached, where the system has a universal plan.

By using an embedded real-time planner that enables
this middle ground, a hybrid system can become much
more robust to a dynamic environment. Such a system
operates by having a planner pass the current subgoals
instead of activities to an executive. The executive then
uses the real-time planner to determine when to perform
which action until either satisfying the current subgoals or
determining that they cannot be reached within n steps.
While the first case signals success and the system
continues by giving new subgoals to the executive, the
second signals failure and the planner will have to alter its
activity sequence to resolve the problem.

This paper starts by describing a universal(n) plan as a
parameterized generalization of a universal plan. The next
section shows how to compile a domain into a universal(n)
plan. Given such a structure, the fourth section shows how
it takes O(structure size) time to determine the next actions
to take given the current state and subgoals if there can
exist a n step plan to reach the subgoals. Subsequent
sections present empirical results, and conclude.

Universal(n) Plans
Ever since discovering the performance limitations of
taking a sense-plan-act approach to controlling robots, the
robotics community has endeavored to develop behavior-
based approaches where a behavior implements a rapid
feedback loop between state estimation and motor control.
While this works well for simple tasks, like controlling
robots with simple activity cycles on a factory assembly
line, it gets much more complicated when controlling

Planner

Current Subgoals Success/Failure

Estimated State

Goals

Motor
Control

Action
Selector

Figure 3: A universal(n) system

Action
Behaviors

Motor
Control

Behavior
Selector

Estimated State

Action
Behaviors

Planner

Action Activation Success/Failure

Estimated State

Goals

Motor
Control

(a)

(b)
Figure 2: Comparing a universal plan (a) with a hybrid
system (b)

Behaviors

robots that have to flexibly react in an unstructured
environment. This difficulty arises from the resulting
complexity in selecting/coordinating the activation of
possibly conflicting behaviors. From the action arbitration
circuits in Pengi (Agre and Chapman 1987) to the
universal plan on EVAR (Schoppers 1995) and the
command arbiter of DAMN (Rosenblatt, Williams, and
Durrant-Whyte 2002), controlling and fusing behaviors
becomes progressively harder as the target system faces
progressively more unstructured environments.

As illustrated in Figure 2, the typical hybrid approach
attempts to resolve the complications of developing a
behavior selector/coordinator by replacing it with a
planner. The planner determines an action schedule that
maps a path from the current situation to a goal state, and
this action schedule is used to incrementally determine
when to activate which action behaviors in order to achieve
the goal state. Since action behaviors are very limited
compared to a global behavior, actions can fail when
environmental conditions evolve to a situation not covered
by their corresponding action behaviors. In such cases a
failure signal tells the planner to search for an alternative
action schedule. Since replanning is computationally
intensive, any low overhead way to reduce failure signals
results in a more responsive system.

The approach presented here reduces the number of
failure signals by inserting a relatively limited real-time
action selector between the planner and behaviors (see
Figure 3). This approach only signals failure when the
action selector fails to find the appropriate action for the
current situation, and the action selector is guaranteed to
resolve a failure if it can be resolved within n steps, where
n is a user specified parameter. This guarantee is
facilitated by evaluating a universal(n) plan against the
current situation and subgoals.

Definition 1: A universal(n) plan is a structure that can be
evaluated in linear time to generate an optimal n level plan
to reach any set of goals from any current situation if such
a plan exists.

Universal(n) plans are more general than universal
plans by virtue of their not being tied down to a specific
end goal. They are more restricted than universal plans by
virtue of the n level requirement, where a level is any
number of simultaneous non-interacting actions. As a user
increases n, the universal(n) plan becomes less restrictive
until reaching some domain dependent value M – where
there is a guarantee that an goal can be reached from any
situation with an M level plans. In practice n is kept
relatively small because universal(n) plans tend to grow
rapidly with n.

Compiling Domains
The approach to generating universal(n) plans presented
here is a two step process. Step one utilizes results from
developing SATPLAN (Kautz and Selman 1992) to
convert a domain into conjunctive normal form (CNF)
whose satisfaction solves an n-level planning problem, and
step two utilizes results from research on knowledge
compilation (Darwiche and Marquis 2002) to convert the
CNF representation into Decomposable Negation Normal
Form (DNNF). It turns out that this form of logical
expression can be evaluated in linear time to compute an
optimal n level plan.

To make this more concrete, consider the following
simple two-operator domain that moves a system between
two states – a and b. Each operator has a precondition that
the variable at has the value a or b and an effect that
assigns the value b or a respectively.

 (make-op :name do[a->b]
 :prec (at=a) :post (at=b))

 (make-op :name do[b->a]
 :prec (at=b) :post (at=a))

This state variable approach to representing a domain
was motivated by the fact that most NASA planning

domains represent spacecraft in terms of state variables,
depletable resources like propellant, and nondepletable
resources like electric power. It also mirrors the SAS+
domain language (Jonsson and Bäckström 1994) with
known complexity results.

Domains to CNF
In SATPLAN generating a CNF encoding of an n-level
planning problem is fairly straightforward. There are
actually several possible encodings (Ernst, Millstein, and
Weld 1997). The encoding used here has a boolean
variable for each (action, level) tuple and an enumerated
variable for each (state variable, level) tuple, where there
are n action levels and n+1 state levels. The generation of
the CNF derives from an observation that executing an
action at level i implies that the action’s preconditions hold
at level i and its effects hold at level i+1. Also, not
executing any action that affects a variable at level i
implies that the variable’s value persists to level i+1.

For instance, suppose that n=2 when compiling the
example domain. The variable logic encoding, where all
literals are variable assignments, of the planning problem
appears below, where variable levels are reflected in
subscripts. Notice that the first disjunct refers to the fact
that the variable at persists from level 1 to 2 if neither of
the two actions are performed at level 1. The second and
third disjunct reflect the implications of executing one of
the two listed operators at level 1 respectively. The last
three disjuncts respectively mirror the first three, but for
level 0 instead of 1.

 (and
 (or do[b->a]1=t do[a->b]1=t
 (and at1=a at2=a)
 (and at1=b at2=b))
 (or do[a->b]1=f (and at1=a at2=b))
 (or do[b->a]1=f (and at1=b at2=a))
 (or do[b->a]0=t do[a->b]0=t
 (and at0=a at1=a)
 (and at0=b at1=b))
 (or do[a->b]0=f (and at0=a at1=b))
 (or do[b->a]0=f (and at0=b at1=a)))

As the example implies, the variable logic encoding
grows linearly with n. In this case, the number of disjuncts
would be three times n. In general the number of disjuncts
is n(|O|+|V|), where |O| and |V| are the domain’s number
operators and state variables respectively. Also, since each
level is a set of disjuncts, the CNF that derives from the
variable logic encoding only grows linearly with n. This
size complexity is typical for a SATPLAN encoding.

Once the initial variable logic equation is expanded into
CNF, removing disjuncts that are subsumed by other
disjuncts reduces the result. It turns out that a disjunct
subsumes another if its variable assignments are a subset of

the other disjunct’s variable assignments. This subset
property implies that any satisfaction of the first disjunct
satisfies the second.

CNF to DNNF
Unfortunately finding a minimal satisfying assignment to a
CNF equation is an NP-complete problem, and more
compilation is needed to generate a universal(n) plan.
Since a DNNF equation can be evaluated in linear time, the
second step converts the CNF to DNNF to represent a
universal(n) plan. DNNF has been defined previously in
terms of a boolean expression where only literals are
negated and the literals appearing in sub-expressions of an
conjunct are disjoint. The following definition slightly
extends Boolean DNNF to variable logic equations, where
the negation of a variable assignment has been replaced by
a disjunct of all other possible assignments to that same
variable.

Definition 2: A variable logic equation is in
Decomposable Negation Normal Form if (1) it contains no
negations and (2) the subexpressions under each conjunct
refer to disjoint sets of variables.

Just as in the boolean case, there are multiple possible
variable logic DNNF expressions equivalent to the CNF
and the objective is to find one that is as small as possible.
Since Disjunctive Normal Form is also DNNF, the largest
DNNF equivalent is exponentially larger than the CNF.
Fortunately much smaller DNNF equivalents can often be
found. The approach here mirrors the Boolean approach to
finding a d-DNNF (Darwiche, 2002) by first recursively
partitioning the CNF disjuncts and then traversing the
partition tree to generate the DNNF.

The whole purpose for partitioning the disjuncts is to
group those that refer to the same variables together and
those that refer to different variables in different partitions.
Since each disjunct refers to multiple variables, it is often
the case that the disjuncts in two sibling partitions will
refer to the same variable, but minimizing the cross
partition variables dramatically reduces the size of the
DNNF equation. This partitioning essentially converts a
flat conjunct of disjuncts into an equation tree with internal
AND nodes and disjuncts of literals at the leaves, where the
number of propositions appearing in multiple branches
below an AND node is minimized.

Mirroring the boolean compiler, partitioning is done by
mapping the CNF equation to a hyper-graph, where nodes
and hyper-arcs respectively correspond to disjuncts and
variables. The nodes that each hyper-arc connects are
determined by the disjuncts where the hyper-arc’s
corresponding variable appears. Given this hyper-graph, a
recursive partitioning using a probabilistic min-cut
algorithm (Wagner and Klimmek 1996) computes a
relatively good partition tree for the disjuncts, and

Figure 5: Evaluating a universal(2) plan when the current
state is at=a and the current subgoal is at=b

 at2=b
 at2=a
 do[b->a]1=t
 at0=b
 at0=a
 do[a->b]0=t
 at2=a
 at2=b
 do[a->b]1=t
 at0=a
 at0=b
 do[b->a]0=t

0 :
inf.:
10 :
inf.:
0 :
5 :

inf.:
0 :

10 :
0 :
inf.:
5 :

0

.inf.
,

5
5
,

5
,

10

.10
,

0

.inf.
,

10
,

5

.

.

(or a=f b=t) (or b=f c=t)

AND
Sep = {b}

partition

(and (or a=f b=t) (or b=f c=t)
a b c

Figure 4: Example of partitioning a CNF equation

generalizing this algorithm by weighting the hyperarchs
with associated variable cardinalities does even better. See
Figure 4 for an extremely simple example with two
disjuncts and three variables whose cardinalities are 2.
From the equation tree perspective, there is an AND node
on top above disjuncts at the leaves. The branches of the
AND node share the variable b, which is recorded in the top
node’s Sep set.

Once the equation tree is computed, computing the
DNNF involves extracting each AND node’s associated
shared variables using the equality

where eqn\{v=c} is an equation generated by replacing
disjuncts containing v=c with True and removing
assignments to v from other disjuncts. If a disjunct ever
ends up with no assignments, it becomes False.

More formally, the DNNF equation is recursively
defined using the following two equations, where the first
and second equations apply to internal and leaf nodes
respectively. In the first equation instances(N.Sep,α) refers
to the set of possible assignments to the vector of variables
in N.Sep that are consistent with α. For instance, running
these equations over Figure 4’s partition starts by calling
dnnf(root,True), and the instances are b=t and b=f since
only b is in root.Sep, and both assignments agree with
True. In general the number of consistent instances grows
exponentially with N.Sep, leading to the use of min-cut to
reduce the size of N.Sep for each partition.

While walking the partition does provide a DNNF
equation that can be evaluated in linear time, two very
important optimizations involve merging common sub-
expressions to decrease the size of the computed structure
and caching computations made when visiting a node for
improving compiler performance (Darwiche 2002). With

respect to Figure 4, there were no common sub-expressions
to merge, and the resulting DNNF expression appears
below.

 (or (and b=t c=t) (and b=f a=f))

Evaluating DNNF
To illustrate a less trivial DNNF expression, consider the
universal(2) plan for the example two operator domain (see
Figure 5). This expression’s top rightmost AND node has
two children, and each child refers to a unique set of
variables. From top to bottom these disjoint sets
respectively are

{at2, do[b->a]1} and {at0, do[a->b]0}.

Given that DNNF AND nodes have a disjoint branches
property, finding optimal satisfying variable assignments
becomes a simple three-step process:

1. associate costs with variable assignments in leaves;
2. propagate node costs up through the tree by either

assigning the min or sum of the descendents’ costs to an
OR or AND node respectively; and

3. if the root’s cost is 0, infinity, or some other value then
respectively return default assignments, failure, or
descend from the root to determine and return the
variable assignments that contribute to its cost.

When evaluating a universal(n) plan, a cost is assigned
to each variable using a number of planning dependent
preferences. First, not performing an action has zero cost.
This results in associating zero with all leaves that set an
action variable false. Second, performing required actions
earlier is preferred. This results in associating lower costs
with leaves that set lower level action variable true. In
Figure 5 the values five and ten were associated with these
leaves. In general the values can be both level and

)(),(),(
.),.(

βαβα
αβ

∧∧≡
∈∈
∧∨ cdnnfNdnnf

kidsNcSepNinstances








¬⇒⊃∃

⇒
≡

¬⇒∈
∨

Otherwise
 if
 if

),(
&

βαβ
α

βα
βαβ

disj

False

True
disjdnnf

disj

,}{\)(
)(

cvcv
vc

=∧==
∈

∨ eqneqn
domain

operator dependent for optimal planning. Third, the
current state determines the costs associated with level 0
state variable assignments. While leaves with assignments
corresponding to the current state have zero cost, leaves
with assignments contradicting the current state have
infinite costs. Finally, associated costs of top-level
variables similarly depend on the current subgoals.
Assignments consistent with the subgoals have zero costs,
and assignments contradicting subgoals have infinite costs.

Figure 5 gives a detailed trace of evaluating a
universal(2) plan for the simple move domain. The leaf
costs are first computed using the planning preferences,
and the results appear in the left hand column. Cost
propagation then progresses through the tree, and the
propagated cost associated with a node appears above it.
Finally the descent from the root is a simple matter of
comparing its cost with the cost of its immediate children.
In this case the current state and goal were at=a and
at=b respectively. Upon evaluating the universal(2) plan,
do[a->b] is identified for execution.

While Figure 5 does display a universal(2) plan for the
example domain, it is not precisely the DNNF equivalent
to the original variable logic encoding. It lacks leaves with
assignments to level 1 state variables or false assignments
to action variables. It turns out that these leaves can be
safely omitted. An earlier incarnation of the compiler kept
them, but the evaluation finds a plan when associating zero
costs with leaves corresponding to false action variable
assignments or intermediate state variable assignments.
Given this, the leaves were omitted to reduce structure size
by 25% on average.

Empirical Results
Both the compiler and evaluator are prototyped in fewer
than 400 and 100 lines of allegro common lisp respectively
– shorter than this paper. For testing purposes six simple
domains were encoded and compiled for varying numbers
of levels:
Robot – A robot that can travel between two places,

discharge its battery with a power hungry action, and
only recharge in one place;

Refuel – An operations crew plans to safely ground and
refuel planes;

Coffee – A barista maintains a coffee machine while
brewing cappuccinos;

Wkshop – Planning to shape and drill a component in a
machine shop;

3blocks* – Blocksworld with three blocks and actions can
only move a block to/from the table; and

3blocks – Full Blocksworld with three blocks.

Raw Compilation
To give a first glimpse of how large universal(n) plans can
get, consider Table 1. The six different domains have
varying numbers of operators and state variables, and each
domain was used to generate universal(n) plans where n
varied from one to four. As the experiments imply, the
number of nodes rapidly grows with n, but not nearly as
rapidly as the number of possible n-level plans to consider.
In the case of universal(4) for a 3-block blocksworld
problem, there were 3976 nodes, but there were also 184 or
104976 different 4 action sequences if only one action is
allowed per level. The number is even larger for arbitrary
numbers of actions per level. Thus the DNNF
representation of universal(n) plans is much more compact
than listing all possible n or fewer level plans.

Even with this compactness, more research is needed to
address the scaling issue. While universal(n) plan size
grows exponentially with variables, operators, and n in
each example, all of the examples had highly interacting
state variables and operators. There was less interaction in
the Wkshop domain and that apparently lead to a slower
universal(n) plan growth. For fully independent systems
the universal(n) plan grows linearly with the number of
systems.

Mutual Exclusion Reasoning
The first attempt to address the scaling issue involves
focusing on interacting operators using techniques from
Graphplan (Blum and Furst 1995). When solving a
propositional planning problem, Graphplan first reasoned
explicitly about how actions destructively interacted with
each other. Such interactions make performing two actions
mutually exclusive (or “mutex”) at a given moment, and
generalizing to a state variable domain involves altering
the definition of mutex to be the following, which
conforms to the standard definition when all variables are
Boolean.

Definition 3: Two distinct operators O1 and O2 are mutex
if there exists a variable v such that v=c1 appears in O1’s
preconditions or effects and v=c2 appears in the O2’s
preconditions or effects, where c1≠c2.

Domain vars ops n=1 n=2 n=3 n=4
Robot 3 4 44 56 86 110
Refuel 4 7 63 91 173 275
Coffee 4 8 104 175 359 680
Wkshop 5 9 105 137 199 286
3blocks* 6 12 246 1200 2004 2803
3blocks 6 18 478 1723 2827 3976

Table 1: The number of nodes in universal(n) plans for
varying domains

With this definition, the two operators in the example
move domain are mutually exclusive since they both affect
the variable at by assigning different values. Within
Graphplan this mutex relationship would be represented as
constraints in each planning level to assure that two
mutually exclusive operators never appear in parallel in a
solution plan. Making a similar restriction in the CNF
representation involves taking each mutex relationship and
computing a synonymous disjunct that assures that at least
one of the mutually exclusive actions does not appear at a
level. For instance, the following two disjuncts would be
tagged to the end of the example domain’s equation to
facilitate compiling in mutex relationships for each level.

(or do[b->a]1=f do[a->b]1=f)
(or do[b->a]0=f do[a->b]0=f)

In general, computing mutex disjuncts only requires
adding 20 lines to the underlying compiler implementation.
Given this change compiling the test domains resulted in
DNNF structures with sizes that appear in the Table 2. The
main message to take away from the table is that adding
disjuncts to a CNF can either increase the DNNF size
slightly or decrease it dramatically depending on operator
interactions.

While mutex reasoning does improve compactness for
domains with heavily interacting operators, there is still
considerable room for improvement. For instance,
blocksworld with three blocks is so constrained that it only
has 13 states, and 132 optimal 4 or less step plans for
getting from one state to the other. Since 169 is much
smaller than 2863, there is still a lot of room for
improvement here using other SATPLAN optimization
techniques (Brafman 2001). On the other hand, the smaller
universal(n) plan assumes that a single optimization
criterion. In general, a universal(n) plan facilitates
optimizing any number of criteria by altering the leaf costs.

Varying Domain Complexity
While the previous experiments document the viability of
this approach, they are not principled enough to cleanly
capture how domain complexity affects universal(n) plan
size. Experiments with an N disk Towers of Hanoi domain
addresses this oversight by varying N. In this domain each

disk has a single associated state variable denoting which
peg it is on, and six associated operators to move it from
one peg to another. For instance, the operators for disk Di
have the following form, where other denotes the peg
other than from and to.

 (make-op :name do[move-Di-from-to]
 :prec (at[Di]=from,
 at[Di-1]=other, ...
 at[D1]=other)
 :post (at[Di]=from)

With this encoding an N disk domain has 6N operators
and N state variables. By varying the number of disks
from one to four and the number of steps from one to six,
this experiment had 24 different data points that appear in
figure 6. Each point denotes the minimum size DNNF
structure generated when compiling the domain five
separate times with mutual exclusion reasoning. Since the
compiler uses randomness during the partitioning step, the
size of the generated DNNF can vary, and in some cases it
varied by a factor of two.

As the graphs show, universal(n) plans grew linearly
with step size, but exponentially with domain complexity.
This is not all that surprising since this domain is
laboriously serializable (Barrett and Weld 1994) and tends
to give classical planners problems when not provided with
the subgoal serialization order.

Related Work
As the title implies, there is a relationship between this
work and universal plans. A universal(n) plan is more
restrictive than a universal plan given the n step limitation,
but it is also more general. Where a universal plan is only
applicable to attaining a single specified set of goal
conditions from any current situation, a universal(n) plan
allows changes to the goal conditions. Actually, the
compiler can generate universal plans. If the action level
width M of the state space is known, the initial variable

Domain vars ops n=1 n=2 n=3 n=4
Robot 3 4 42 68 86 104
Refuel 4 7 67 125 214 289
Coffee 4 8 83 126 273 471
Wkshop 5 9 100 120 188 271
3blocks* 6 12 161 954 1517 2514
3blocks 6 18 216 1253 1957 2800

Table 2: The number of nodes in universal(n) plans for
varying domains with mutual exclusion reasoning

Figure 6: universal(n) plan size for N disk Towers of
Hanoi domains.

1
2

3
4

5
6 1

2
3

4

0

500

1000

1500

2000

2500

N
od

es

Steps
Disks

logic equation generated from the domain and M can be
altered to insert goal conditions in terms of a conjunct of
assignments to top-level state variables. This conjunct
actually simplifies the generated DNNF equation and
evaluating this equation generates the optimal n level plan
in linear time for the goal conditions. Using the compiler
to generate universal plans would make the architecture
look like CIRCA (Musliner, Goldman, and Pelican 2001),
where the AI system synthesizes real-time controllers
similar to universal plans.

Given the underlying motivations for real-time
performance in the face of changing goals and initial states,
this work can be thought of as most related to the Burton
planner in the Deep Space 1 remote agent experiment
(Williams and Nayak 1997). Burton assumed a very
restrictive representation where the state variables had at
least one ordering where altering earlier variables had no
affect on later ones. Universal(n) planning makes no such
ordering constraints. Still, the work on Burton can be
made to apply to any domain by collapsing variables that
recursively affect each other into a single variable.
Unfortunately this will make reasoning about the combined
variable progressively more intractable, making Burton’s
action selection step’s performance degrade exponentially.
At this point universal(n) plans might even help Burton by
replacing its action selection step.

Future Work
While the system succeeds in computing universal(n) plans
and evaluating such structures in linear time to provide
optimal n level plans, there are many avenues for future
research. First, universal(n) plans tend to grow rapidly
with n, but there are techniques for reducing structure size.
Identifying and extracting zeroed leaves reduces the size
by 25% on average, and mutex reasoning can drop the size
by another 30% depending on operator interactions. Still,
extra optimizations are possible. For instance, M=1 for the
example domain, but Figure 5 had a universal(2) plan.
Close inspection of this structure results in a discovery that
the action nodes with cost 10 (i.e. the higher level action
variables) are never selected, and can thus be removed
from the structure. How to algorithmically perform this
optimization for an arbitrary costing policy is still
undetermined. Also, the DNNF returned by the compiler
has a varying size due to using a probabilistic min-cut
algorithm. This implies that there is no guarantee that the
compiler is actually generating the optimal DNNF
equation.

Another avenue of research derives from an observation
that there are DNNF based knowledge compilation results
for the model-based diagnosis problem (Darwiche 1998).
Combining these results with work in this paper results in a
generalization of the Livingstone executive (Williams and
Nayak 1996) that was flown on Deep Space 1. In this case
the resulting evaluation engine is only 100 lines long and

the diagnosis and recovery mechanisms are compiled into
the DNNF structure. Both of these components are much
easier to validate than the code used to implement
Livingstone and reason about its models.

 A third avenue of research revolves around distributed
execution. It turns out that using DNNF structures
facilitates distributing diagnosis reasoning across multiple
agents (Chung and Barrett 2003). The same should hold
for distributing an action selector. The main source of
complexity is the need alter the compiler to find acceptably
small DNNF structures that group state reasoning and
action selection components by agent in order to reduce
cross agent communication. Also, the evaluation routine
needs to be distributed in such a way that momentary
communication losses do not fatally impact execution.
The current evaluation approach of propagating costs to the
root and then drilling down to find the sources of the
minimum cost would be fatally impacted by intermittent
communication loss.

Finally, more open-ended research directions include
expanding the system to handle metric resources, time,
exogenous events, uncertainty, and other representational
enhancements. Conditional effects of actions can be
encoded as

(or actioni=f (not conditioni) effecti+1),
where condition and effect are from the conditional effect
of action. Metric resources can also be included by noting
how they restrict the sets of actions that can be performed
simultaneously at a level of the universal(n) plan.

Conclusions
This paper presented a knowledge-compilation based
approach to implementing an offline domain compiler that
enables an embedded real-time planner for a more robust
plan execution system. Past approaches either focused on
generating universal plans or developing tools for
implementing more robust action behaviors (Williams and
Gupta 1999) (Simmons and Apfelbaum 1998). While the
offline compiler can turn the embedded real-time planner
into a universal plan, it can avoid the space requirements of
a universal plan by generating a smaller universal(n) plan.
With such a structure, the embedded real-time planner can
determine n-level plans to achieve any set of goals from
any current state if such a plan exists. This enhances work
on making action behaviors more robust by enabling rapid
changes in action selection as the environment evolves.

Acknowledgements
This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with
the National Aeronautics and Space Administration. The
author would also like to thank Seung Chung, Adnan

Darwiche, Daniel Dvorak, and Mitch Ingham for
discussions contributing to this effort.

References
Agre, P. and Chapman, D. 1987. Pengi: An Implement-
ation of a Theory of Activity. In Proceedings of the Sixth
National Conference on Artificial Intelligence. 268-272.
Seattle, WA: American Association for Artificial
Intelligence.

Barrett, A. and Weld, D. 1994. Partial-order planning:
evaluating possible efficiency gains. Artificial Intelligence
67:71-112.

Blum, A. and Furst, M. 1995. Fast Planning Through
Planning Graph Analysis. In Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence,
Montreal, Canada: Morgan Kaufmann.

Brafman, R. 2001. A Simplifier for Propositional Formulas
with Many Binary Clauses. In Proceedings of the
Seventeenth International Joint Conference on Artificial
Intelligence. 515-520, Seattle, WA: Morgan Kaufmann.

Brooks, R. 1999. Cambrian Intelligence. Cambridge, MA:
MIT Press.

Chung, S. and Barrett, A. 2003. Distributed Real-time
Model-based Diagnosis. In Proceedings of the 2003 IEEE
Aerospace Conference, Big Sky, MT: IEEE Aerospace
Conferences, Inc.

Darwiche, A. 1998. Model-based diagnosis using
structured system descriptions. Journal of Artificial
Intelligence Research 8:165-222.

Darwiche, A. 2002. A Compiler for Deterministic
Decomposable Negation Normal Form. In Proceedings of
the Eighteenth National Conference on Artificial
Intelligence. 627-634. Edmonton, Alberta, Canada: AAAI
Press.

Darwiche, A. and Marquis, P. 2002. A Knowledge
Compilation Map. Journal of Artificial Intelligence
Research 17:229-264.

Ernst, M. and Millstein, T. and Weld, D. 1997. Automatic
SAT-Compilation of Planning Problems. In Proceedings of
the Fifteenth International Joint Conference on Artificial
Intelligence, 1169-1177. NAGOYA, Aichi, Japan: Morgan
Kaufmann.

Jonsson, P. and Bäckström, C. 1994. Tractable Planning
with State Variables by Exploiting Structural Restrictions.
In Proceedings of the Twelfth National Conference on
Artificial Intelligence. 998-1003. Seattle, WA: AAAI
Press.

Kautz, H. and Selman, B. 1992. Planning as Satisfiability.
In Proceedings of the Tenth European Conference on
Artificial Intelligence. 359-363. Vienna, Austria: John
Wiley and Sons.

Musliner, D. and Goldman, R. and Pelican, M. 2001.
Planning with Increasingly Complex Executive Models. In
Proceedings of the International Conference on Intelligent
Robots and Systems (IROS), Maui, Hawaii: IEEE Press.

Rosenblatt, J. and Williams, S. and Durrant-Whyte, H.
2002. Behavior-Based Control for Autonomous Under-
water Exploration. International Journal of Information
Sciences 145(1-2):69-87.

Schoppers, M. 1995. The use of dynamics in an intelligent
controller for a space faring rescue robot. Artificial
Intelligence 73:175-230.

Simmons, R. and Apfelbaum, D. 1998. A Task Description
Language for Robot Control. In Proceedings of the
Conference on Intelligent Robotics and Systems. Victoria,
BC: IEEE Press.

Wagner, F. and Klimmek, R. 1996. A Simple Hypergraph
Min Cut Algorithm. Technical Report, b 96-02, Inst. Of
Computer Science, Freie Universität Berlin.

Williams, B. and Nayak, P. 1996. A Model-based
Approach to Reactive Self-Configuring Systems. In
Proceedings of the Thirteenth National Conference on
Artificial Intelligence, Portland, OR: AAAI Press.

Williams, B. and Nayak, P. 1997. A Reactive Planner for a
Model-based Executive. In Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence,
1169-1177. NAGOYA, Aichi, Japan: Morgan Kaufmann.

Williams, B. and Gupta, V. 1999. Unifying Model-based
and Reactive Programming in a Model-based Executive. In
Proceedings of the Tenth International Workshop on
Principles of Diagnosis, Loch Awe Hotel, Scotland.

