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Figure 1:  Parameterized state-space coverage – from a 
hybrid system to a universal plan 
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Abstract 
While universal plans tell a system how to reach a goal 
regardless of what state it is in, such plans can be too large 
to represent.  Hybrid systems execute plans where each 
action is implemented to robustly produce effects if the 
world does not stray outside the action’s control envelope.  
This paper presents a middle ground between these two 
extremes that uses plans, but also enables much larger 
control envelopes using a real-time planner that finds 
optimal n step plans to achieve a set of goals if one exists. 

Introduction   
Ever since discovering that SHAKEY lacked the speed 
needed to deal with the real world (Brooks 1999), the 
robotics community has endeavored to develop more 
responsive systems based either on universal plans or 
hybrid planners and executives.  In the case of universal 
plans, researchers merge a set of behaviors into a universal 
plan, but the system must be restricted to relatively small 
problem domains to avoid having to reason about too many 
states and represent them in the universal plan.  The hybrid 
approach avoids the problem by implementing activities as 
small sets of behaviors with limited applicability and then 
using a planner to string these actions together into an 
action sequence to traverse the system’s state space from 
the current initial conditions to a goal state.  This approach 
works well in static environments, but it is inherently 
brittle when addressing a dynamic world that can cause a 
failure by escaping an action’s region of applicability. 

This paper presents a middle ground between these two 
extremes, where a system can vary from the hybrid 
approach to a universal plan depending on a single integer 
parameter.  As illustrated in Figure 1, the parameter starts 
at 1 to denote the hybrid approach where each linked 
action has a small coverage of the state space.  As the 
parameter increases, the system’s state-space coverage 
associated with reaching each subgoal grows from the 
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subgoal’s associated action until some domain dependent 
value M is reached, where the system has a universal plan. 

By using an embedded real-time planner that enables 
this middle ground, a hybrid system can become much 
more robust to a dynamic environment.  Such a system 
operates by having a planner pass the current subgoals 
instead of activities to an executive.  The executive then 
uses the real-time planner to determine when to perform 
which action until either satisfying the current subgoals or 
determining that they cannot be reached within n steps.  
While the first case signals success and the system 
continues by giving new subgoals to the executive, the 
second signals failure and the planner will have to alter its 
activity sequence to resolve the problem. 

This paper starts by describing a universal(n) plan as a 
parameterized generalization of a universal plan.  The next 
section shows how to compile a domain into a universal(n) 
plan.  Given such a structure, the fourth section shows how 
it takes O(structure size) time to determine the next actions 
to take given the current state and subgoals if there can 
exist a n step plan to reach the subgoals.  Subsequent 
sections present empirical results, and conclude. 

Universal(n) Plans 
Ever since discovering the performance limitations of 
taking a sense-plan-act approach to controlling robots, the 
robotics community has endeavored to develop behavior-
based approaches where a behavior implements a rapid 
feedback loop between state estimation and motor control.  
While this works well for simple tasks, like controlling 
robots with simple activity cycles on a factory assembly 
line, it gets much more complicated when controlling 
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Behaviors 

robots that have to flexibly react in an unstructured 
environment.  This difficulty arises from the resulting 
complexity in selecting/coordinating the activation of 
possibly conflicting behaviors.  From the action arbitration 
circuits in Pengi (Agre and Chapman 1987) to the 
universal plan on EVAR (Schoppers 1995) and the 
command arbiter of DAMN (Rosenblatt, Williams, and 
Durrant-Whyte 2002), controlling and fusing behaviors 
becomes progressively harder as the target system faces 
progressively more unstructured environments. 

As illustrated in Figure 2, the typical hybrid approach 
attempts to resolve the complications of developing a 
behavior selector/coordinator by replacing it with a 
planner.  The planner determines an action schedule that 
maps a path from the current situation to a goal state, and 
this action schedule is used to incrementally determine 
when to activate which action behaviors in order to achieve 
the goal state.  Since action behaviors are very limited 
compared to a global behavior, actions can fail when 
environmental conditions evolve to a situation not covered 
by their corresponding action behaviors.  In such cases a 
failure signal tells the planner to search for an alternative 
action schedule.  Since replanning is computationally 
intensive, any low overhead way to reduce failure signals 
results in a more responsive system.   

The approach presented here reduces the number of 
failure signals by inserting a relatively limited real-time 
action selector between the planner and behaviors (see 
Figure 3).  This approach only signals failure when the 
action selector fails to find the appropriate action for the 
current situation, and the action selector is guaranteed to 
resolve a failure if it can be resolved within n steps, where 
n is a user specified parameter.  This guarantee is 
facilitated by evaluating a universal(n) plan against the 
current situation and subgoals.  

Definition 1: A universal(n) plan is a structure that can be 
evaluated in linear time to generate an optimal n level plan 
to reach any set of goals from any current situation if such 
a plan exists. 

Universal(n) plans are more general than universal 
plans by virtue of their not being tied down to a specific 
end goal.  They are more restricted than universal plans by 
virtue of the n level requirement, where a level is any 
number of simultaneous non-interacting actions.  As a user 
increases n, the universal(n) plan becomes less restrictive 
until reaching some domain dependent value M – where 
there is a guarantee that an goal can be reached from any 
situation with an M level plans.  In practice n is kept 
relatively small because universal(n) plans tend to grow 
rapidly with n. 

Compiling Domains 
The approach to generating universal(n) plans presented 
here is a two step process.  Step one utilizes results from 
developing SATPLAN (Kautz and Selman 1992) to 
convert a domain into conjunctive normal form (CNF) 
whose satisfaction solves an n-level planning problem, and 
step two utilizes results from research on knowledge 
compilation (Darwiche and Marquis 2002) to convert the 
CNF representation into Decomposable Negation Normal 
Form (DNNF).  It turns out that this form of logical 
expression can be evaluated in linear time to compute an 
optimal n level plan.   

To make this more concrete, consider the following 
simple two-operator domain that moves a system between 
two states – a and b.  Each operator has a precondition that 
the variable at has the value a or b and an effect that 
assigns the value b or a respectively. 

 (make-op :name do[a->b] 
          :prec (at=a) :post (at=b)) 

 (make-op :name do[b->a] 
          :prec (at=b) :post (at=a)) 

This state variable approach to representing a domain 
was motivated by the fact that most NASA planning 



domains represent spacecraft in terms of state variables, 
depletable resources like propellant, and nondepletable 
resources like electric power.  It also mirrors the SAS+ 
domain language (Jonsson and Bäckström 1994) with 
known complexity results. 

Domains to CNF 
In SATPLAN generating a CNF encoding of an n-level 
planning problem is fairly straightforward.  There are 
actually several possible encodings (Ernst, Millstein, and 
Weld 1997).  The encoding used here has a boolean 
variable for each (action, level) tuple and an enumerated 
variable for each (state variable, level) tuple, where there 
are n action levels and n+1 state levels.  The generation of 
the CNF derives from an observation that executing an 
action at level i implies that the action’s preconditions hold 
at level i and its effects hold at level i+1.  Also, not 
executing any action that affects a variable at level i 
implies that the variable’s value persists to level i+1. 

For instance, suppose that n=2 when compiling the 
example domain.  The variable logic encoding, where all 
literals are variable assignments, of the planning problem 
appears below, where variable levels are reflected in 
subscripts.  Notice that the first disjunct refers to the fact 
that the variable at persists from level 1 to 2 if neither of 
the two actions are performed at level 1.  The second and 
third disjunct reflect the implications of executing one of 
the two listed operators at level 1 respectively.  The last 
three disjuncts respectively mirror the first three, but for 
level 0 instead of 1. 

  (and  
    (or do[b->a]1=t do[a->b]1=t 
        (and at1=a at2=a) 
        (and at1=b at2=b)) 
    (or do[a->b]1=f (and at1=a at2=b)) 
    (or do[b->a]1=f (and at1=b at2=a)) 
    (or do[b->a]0=t do[a->b]0=t 
        (and at0=a at1=a) 
        (and at0=b at1=b)) 
    (or do[a->b]0=f (and at0=a at1=b)) 
    (or do[b->a]0=f (and at0=b at1=a))) 

As the example implies, the variable logic encoding 
grows linearly with n.  In this case, the number of disjuncts 
would be three times n.  In general the number of disjuncts 
is n(|O|+|V|), where |O| and |V| are the domain’s number 
operators and state variables respectively.  Also, since each 
level is a set of disjuncts, the CNF that derives from the 
variable logic encoding only grows linearly with n.  This 
size complexity is typical for a SATPLAN encoding.   

Once the initial variable logic equation is expanded into 
CNF, removing disjuncts that are subsumed by other 
disjuncts reduces the result.  It turns out that a disjunct 
subsumes another if its variable assignments are a subset of 

the other disjunct’s variable assignments.  This subset 
property implies that any satisfaction of the first disjunct 
satisfies the second. 

CNF to DNNF 
Unfortunately finding a minimal satisfying assignment to a 
CNF equation is an NP-complete problem, and more 
compilation is needed to generate a universal(n) plan.  
Since a DNNF equation can be evaluated in linear time, the 
second step converts the CNF to DNNF to represent a 
universal(n) plan.  DNNF has been defined previously in 
terms of a boolean expression where only literals are 
negated and the literals appearing in sub-expressions of an 
conjunct are disjoint.  The following definition slightly 
extends Boolean DNNF to variable logic equations, where 
the negation of a variable assignment has been replaced by 
a disjunct of all other possible assignments to that same 
variable. 

Definition 2: A variable logic equation is in 
Decomposable Negation Normal Form if (1) it contains no 
negations and (2) the subexpressions under each conjunct 
refer to disjoint sets of variables. 

Just as in the boolean case, there are multiple possible 
variable logic DNNF expressions equivalent to the CNF 
and the objective is to find one that is as small as possible.  
Since Disjunctive Normal Form is also DNNF, the largest 
DNNF equivalent is exponentially larger than the CNF.  
Fortunately much smaller DNNF equivalents can often be 
found.  The approach here mirrors the Boolean approach to 
finding a d-DNNF (Darwiche, 2002) by first recursively 
partitioning the CNF disjuncts and then traversing the 
partition tree to generate the DNNF. 

The whole purpose for partitioning the disjuncts is to 
group those that refer to the same variables together and 
those that refer to different variables in different partitions.  
Since each disjunct refers to multiple variables, it is often 
the case that the disjuncts in two sibling partitions will 
refer to the same variable, but minimizing the cross 
partition variables dramatically reduces the size of the 
DNNF equation.  This partitioning essentially converts a 
flat conjunct of disjuncts into an equation tree with internal 
AND nodes and disjuncts of literals at the leaves, where the 
number of propositions appearing in multiple branches 
below an AND node is minimized. 

Mirroring the boolean compiler, partitioning is done by 
mapping the CNF equation to a hyper-graph, where nodes 
and hyper-arcs respectively correspond to disjuncts and 
variables.  The nodes that each hyper-arc connects are 
determined by the disjuncts where the hyper-arc’s 
corresponding variable appears.  Given this hyper-graph, a 
recursive partitioning using a probabilistic min-cut 
algorithm (Wagner and Klimmek 1996) computes a 
relatively good partition tree for the disjuncts, and 



Figure 5:  Evaluating a universal(2) plan when the current 
state is at=a and the current subgoal is at=b 
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Figure 4:  Example of partitioning a CNF equation 

generalizing this algorithm by weighting the hyperarchs 
with associated variable cardinalities does even better.  See 
Figure 4 for an extremely simple example with two 
disjuncts and three variables whose cardinalities are 2.  
From the equation tree perspective, there is an AND node 
on top above disjuncts at the leaves.  The branches of the 
AND node share the variable b, which is recorded in the top 
node’s Sep set.   

Once the equation tree is computed, computing the 
DNNF involves extracting each AND node’s associated 
shared variables using the equality 

 
 
where eqn\{v=c} is an equation generated by replacing 
disjuncts containing v=c with True and removing 
assignments to v from other disjuncts.  If a disjunct ever 
ends up with no assignments, it becomes False.  

More formally, the DNNF equation is recursively 
defined using the following two equations, where the first 
and second equations apply to internal and leaf nodes 
respectively.  In the first equation instances(N.Sep,α) refers 
to the set of possible assignments to the vector of variables 
in N.Sep that are consistent with α.  For instance, running 
these equations over Figure 4’s partition starts by calling 
dnnf(root,True), and the instances are b=t and b=f since 
only b is in root.Sep, and both assignments agree with 
True.  In general the number of consistent instances grows 
exponentially with N.Sep, leading to the use of min-cut to 
reduce the size of N.Sep for each partition. 
 
 
 
 
 
 
 

While walking the partition does provide a DNNF 
equation that can be evaluated in linear time, two very 
important optimizations involve merging common sub-
expressions to decrease the size of the computed structure 
and caching computations made when visiting a node for 
improving compiler performance (Darwiche 2002).  With 

respect to Figure 4, there were no common sub-expressions 
to merge, and the resulting DNNF expression appears 
below. 

  (or (and b=t c=t) (and b=f a=f)) 

Evaluating DNNF 
To illustrate a less trivial DNNF expression, consider the 
universal(2) plan for the example two operator domain (see 
Figure 5).  This expression’s top rightmost AND node has 
two children, and each child refers to a unique set of 
variables.  From top to bottom these disjoint sets 
respectively are  

{at2, do[b->a]1} and {at0, do[a->b]0}. 

Given that DNNF AND nodes have a disjoint branches 
property, finding optimal satisfying variable assignments 
becomes a simple three-step process: 

1. associate costs with variable assignments in leaves; 
2. propagate node costs up through the tree by either 

assigning the min or sum of the descendents’ costs to an 
OR or AND node respectively; and 

3. if the root’s cost is 0, infinity, or some other value then 
respectively return default assignments, failure, or 
descend from the root to determine and return the 
variable assignments that contribute to its cost. 

When evaluating a universal(n) plan, a cost is assigned 
to each variable using a number of planning dependent 
preferences.  First, not performing an action has zero cost.  
This results in associating zero with all leaves that set an 
action variable false.  Second, performing required actions 
earlier is preferred.   This results in associating lower costs 
with leaves that set lower level action variable true.  In 
Figure 5 the values five and ten were associated with these 
leaves.  In general the values can be both level and 
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operator dependent for optimal planning.  Third, the 
current state determines the costs associated with level 0 
state variable assignments.  While leaves with assignments 
corresponding to the current state have zero cost, leaves 
with assignments contradicting the current state have 
infinite costs.  Finally, associated costs of top-level 
variables similarly depend on the current subgoals.  
Assignments consistent with the subgoals have zero costs, 
and assignments contradicting subgoals have infinite costs. 

Figure 5 gives a detailed trace of evaluating a 
universal(2) plan for the simple move domain.  The leaf 
costs are first computed using the planning preferences, 
and the results appear in the left hand column.  Cost 
propagation then progresses through the tree, and the 
propagated cost associated with a node appears above it.  
Finally the descent from the root is a simple matter of 
comparing its cost with the cost of its immediate children.  
In this case the current state and goal were at=a and 
at=b respectively.  Upon evaluating the universal(2) plan, 
do[a->b] is identified for execution. 

While Figure 5 does display a universal(2) plan for the 
example domain, it is not precisely the DNNF equivalent 
to the original variable logic encoding.  It lacks leaves with 
assignments to level 1 state variables or false assignments 
to action variables.  It turns out that these leaves can be 
safely omitted.  An earlier incarnation of the compiler kept 
them, but the evaluation finds a plan when associating zero 
costs with leaves corresponding to false action variable 
assignments or intermediate state variable assignments.  
Given this, the leaves were omitted to reduce structure size 
by 25% on average.   

Empirical Results 
Both the compiler and evaluator are prototyped in fewer 
than 400 and 100 lines of allegro common lisp respectively 
– shorter than this paper.  For testing purposes six simple 
domains were encoded and compiled for varying numbers 
of levels:   
Robot – A robot that can travel between two places, 

discharge its battery with a power hungry action, and 
only recharge in one place; 

Refuel – An operations crew plans to safely ground and 
refuel planes; 

Coffee – A barista maintains a coffee machine while 
brewing cappuccinos;  

Wkshop – Planning to shape and drill a component in a 
machine shop; 

3blocks* – Blocksworld with three blocks and actions can 
only move a block to/from the table; and 

3blocks – Full Blocksworld with three blocks. 

Raw Compilation 
To give a first glimpse of how large universal(n) plans can 
get, consider Table 1.  The six different domains have 
varying numbers of operators and state variables, and each 
domain was used to generate universal(n) plans where n 
varied from one to four.  As the experiments imply, the 
number of nodes rapidly grows with n, but not nearly as 
rapidly as the number of possible n-level plans to consider.  
In the case of universal(4) for a 3-block blocksworld 
problem, there were 3976  nodes, but there were also 184 or 
104976 different 4 action sequences if only one action is 
allowed per level.  The number is even larger for arbitrary 
numbers of actions per level.  Thus the DNNF 
representation of universal(n) plans is much more compact 
than listing all possible n or fewer level plans.   

Even with this compactness, more research is needed to 
address the scaling issue.  While universal(n) plan size  
grows exponentially with variables, operators, and n in 
each example, all of the examples had highly interacting 
state variables and operators.  There was less interaction in 
the Wkshop domain and that apparently lead to a slower 
universal(n) plan growth.  For fully independent systems 
the universal(n) plan grows linearly with the number of 
systems. 

Mutual Exclusion Reasoning 
The first attempt to address the scaling issue involves 
focusing on interacting operators using techniques from 
Graphplan (Blum and Furst 1995).  When solving a 
propositional planning problem, Graphplan first reasoned 
explicitly about how actions destructively interacted with 
each other.  Such interactions make performing two actions 
mutually exclusive (or “mutex”) at a given moment, and 
generalizing to a state variable domain involves altering 
the definition of mutex to be the following, which 
conforms to the standard definition when all variables are 
Boolean. 

Definition 3: Two distinct operators O1 and O2 are mutex 
if there exists a variable v such that v=c1 appears in O1’s 
preconditions or effects and v=c2 appears in the O2’s 
preconditions or effects, where c1≠c2. 

 
Domain vars ops n=1 n=2 n=3 n=4 
Robot 3 4 44 56 86 110 
Refuel 4 7 63 91 173 275 
Coffee 4 8 104 175 359 680 
Wkshop 5 9 105 137 199 286 
3blocks* 6 12 246 1200 2004 2803 
3blocks 6 18 478 1723 2827 3976 

Table 1: The number of nodes in universal(n) plans for 
varying domains 



With this definition, the two operators in the example 
move domain are mutually exclusive since they both affect 
the variable at by assigning different values.  Within 
Graphplan this mutex relationship would be represented as 
constraints in each planning level to assure that two 
mutually exclusive operators never appear in parallel in a 
solution plan.  Making a similar restriction in the CNF 
representation involves taking each mutex relationship and 
computing a synonymous disjunct that assures that at least 
one of the mutually exclusive actions does not appear at a 
level.  For instance, the following two disjuncts would be 
tagged to the end of the example domain’s equation to 
facilitate compiling in mutex relationships for each level.  

(or do[b->a]1=f do[a->b]1=f) 
(or do[b->a]0=f do[a->b]0=f) 

In general, computing mutex disjuncts only requires 
adding 20 lines to the underlying compiler implementation.  
Given this change compiling the test domains resulted in 
DNNF structures with sizes that appear in the Table 2.  The 
main message to take away from the table is that adding 
disjuncts to a CNF can either increase the DNNF size 
slightly or decrease it dramatically depending on operator 
interactions.   

While mutex reasoning does improve compactness for 
domains with heavily interacting operators, there is still 
considerable room for improvement.  For instance, 
blocksworld with three blocks is so constrained that it only 
has 13 states, and 132 optimal 4 or less step plans for 
getting from one state to the other.  Since 169 is much 
smaller than 2863, there is still a lot of room for 
improvement here using other SATPLAN optimization 
techniques (Brafman 2001).  On the other hand, the smaller 
universal(n) plan assumes that a single optimization 
criterion.  In general, a universal(n) plan facilitates 
optimizing any number of criteria by altering the leaf costs. 

Varying Domain Complexity 
While the previous experiments document the viability of 
this approach, they are not principled enough to cleanly 
capture how domain complexity affects universal(n) plan 
size.  Experiments with an N disk Towers of Hanoi domain 
addresses this oversight by varying N.  In this domain each 

disk has a single associated state variable denoting which 
peg it is on, and six associated operators to move it from 
one peg to another.  For instance, the operators for disk Di 
have the following form, where other denotes the peg 
other than from and to. 

 (make-op :name do[move-Di-from-to] 
          :prec (at[Di]=from,  
                 at[Di-1]=other, ... 
                 at[D1]=other) 
          :post (at[Di]=from) 

With this encoding an N disk domain has 6N operators 
and N state variables.  By varying the number of disks 
from one to four and the number of steps from one to six, 
this experiment had 24 different data points that appear in 
figure 6.  Each point denotes the minimum size DNNF 
structure generated when compiling the domain five 
separate times with mutual exclusion reasoning.  Since the 
compiler uses randomness during the partitioning step, the 
size of the generated DNNF can vary, and in some cases it 
varied by a factor of two. 

As the graphs show, universal(n) plans grew linearly 
with step size, but exponentially with domain complexity.  
This is not all that surprising since this domain is 
laboriously serializable (Barrett and Weld 1994) and tends 
to give classical planners problems when not provided with 
the subgoal serialization order. 

Related Work 
As the title implies, there is a relationship between this 
work and universal plans.  A universal(n) plan is more 
restrictive than a universal plan given the n step limitation, 
but it is also more general.  Where a universal plan is only 
applicable to attaining a single specified set of goal 
conditions from any current situation, a universal(n) plan 
allows changes to the goal conditions.  Actually, the 
compiler can generate universal plans.  If the action level 
width M of the state space is known, the initial variable 

 
Domain vars ops n=1 n=2 n=3 n=4 
Robot 3 4 42 68 86 104 
Refuel 4 7 67 125 214 289 
Coffee 4 8 83 126 273 471 
Wkshop 5 9 100 120 188 271 
3blocks* 6 12 161 954 1517 2514 
3blocks 6 18 216 1253 1957 2800 

Table 2: The number of nodes in universal(n) plans for 
varying domains with mutual exclusion reasoning 

Figure 6: universal(n) plan size for N disk Towers of 
Hanoi domains. 
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logic equation generated from the domain and M can be 
altered to insert goal conditions in terms of a conjunct of 
assignments to top-level state variables.  This conjunct 
actually simplifies the generated DNNF equation and 
evaluating this equation generates the optimal n level plan 
in linear time for the goal conditions.  Using the compiler 
to generate universal plans would make the architecture 
look like CIRCA (Musliner, Goldman, and Pelican 2001), 
where the AI system synthesizes real-time controllers 
similar to universal plans. 

Given the underlying motivations for real-time 
performance in the face of changing goals and initial states, 
this work can be thought of as most related to the Burton 
planner in the Deep Space 1 remote agent experiment 
(Williams and Nayak 1997).  Burton assumed a very 
restrictive representation where the state variables had at 
least one ordering where altering earlier variables had no 
affect on later ones.  Universal(n) planning makes no such 
ordering constraints.  Still, the work on Burton can be 
made to apply to any domain by collapsing variables that 
recursively affect each other into a single variable.  
Unfortunately this will make reasoning about the combined 
variable progressively more intractable, making Burton’s 
action selection step’s performance degrade exponentially.  
At this point universal(n) plans might even help Burton by 
replacing its action selection step. 

Future Work 
While the system succeeds in computing universal(n) plans 
and evaluating such structures in linear time to provide 
optimal n level plans, there are many avenues for future 
research.  First, universal(n) plans tend to grow rapidly 
with n, but there are techniques for reducing structure size.  
Identifying and extracting zeroed leaves reduces the size 
by 25% on average, and mutex reasoning can drop the size 
by another 30% depending on operator interactions.  Still, 
extra optimizations are possible.  For instance, M=1 for the 
example domain, but Figure 5 had a universal(2) plan.  
Close inspection of this structure results in a discovery that 
the action nodes with cost 10 (i.e. the higher level action 
variables) are never selected, and can thus be removed 
from the structure.  How to algorithmically perform this 
optimization for an arbitrary costing policy is still 
undetermined.  Also, the DNNF returned by the compiler 
has a varying size due to using a probabilistic min-cut 
algorithm.  This implies that there is no guarantee that the 
compiler is actually generating the optimal DNNF 
equation. 

Another avenue of research derives from an observation 
that there are DNNF based knowledge compilation results 
for the model-based diagnosis problem (Darwiche 1998).  
Combining these results with work in this paper results in a 
generalization of the Livingstone executive (Williams and 
Nayak 1996) that was flown on Deep Space 1.  In this case 
the resulting evaluation engine is only 100 lines long and 

the diagnosis and recovery mechanisms are compiled into 
the DNNF structure.  Both of these components are much 
easier to validate than the code used to implement 
Livingstone and reason about its models. 

  A third avenue of research revolves around distributed 
execution.  It turns out that using DNNF structures 
facilitates distributing diagnosis reasoning across multiple 
agents (Chung and Barrett 2003).  The same should hold 
for distributing an action selector.  The main source of 
complexity is the need alter the compiler to find acceptably 
small DNNF structures that group state reasoning and 
action selection components by agent in order to reduce 
cross agent communication.  Also, the evaluation routine 
needs to be distributed in such a way that momentary 
communication losses do not fatally impact execution.  
The current evaluation approach of propagating costs to the 
root and then drilling down to find the sources of the 
minimum cost would be fatally impacted by intermittent 
communication loss. 

Finally, more open-ended research directions include 
expanding the system to handle metric resources, time, 
exogenous events, uncertainty, and other representational 
enhancements.  Conditional effects of actions can be 
encoded as  

(or actioni=f (not conditioni) effecti+1), 
where condition and effect are from the conditional effect 
of action. Metric resources can also be included by noting 
how they restrict the sets of actions that can be performed 
simultaneously at a level of the universal(n) plan. 

Conclusions 
This paper presented a knowledge-compilation based 
approach to implementing an offline domain compiler that 
enables an embedded real-time planner for a more robust 
plan execution system.  Past approaches either focused on 
generating universal plans or developing tools for 
implementing more robust action behaviors (Williams and 
Gupta 1999) (Simmons and Apfelbaum 1998).  While the 
offline compiler can turn the embedded real-time planner 
into a universal plan, it can avoid the space requirements of 
a universal plan by generating a smaller universal(n) plan.  
With such a structure, the embedded real-time planner can 
determine n-level plans to achieve any set of goals from 
any current state if such a plan exists.  This enhances work 
on making action behaviors more robust by enabling rapid 
changes in action selection as the environment evolves. 
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