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Abstract
This paper compares and contrasts several coordination
schemes for a system that continuously plans to control
collections of rovers or spacecraft using collective mission
goals instead of goals or command sequences for each
spacecraft.  A collection of self-commanding robotic systems
would autonomously coordinate itself to satisfy high level
science and engineering goals in a changing partially
understood environment – making feasible the operation of
tens or even a hundred spacecraft.

1. Introduction
While explicitly commanding a spacecraft via low level
command sequences has worked spectacularly on previous
NASA missions, there are limitations deriving from
communications restrictions – scheduling time to commun-
icate with a particular spacecraft involves competing with
other projects due to the limited number of deep space
network antennae.  This implies that a spacecraft can spend
a long time just waiting whenever a command sequence
fails. This is one reason why the New Millennium program
has an objective to migrate parts of mission control tasks
onboard a spacecraft to reduce wait time by making
spacecraft more robust [Muscettola et al. 1997].  The
migrated software is called a “remote agent” and can be
partitioned into 4 components:

• a mission manager to generate science goals,
• a planner/scheduler to turn goals into executable

activities through reasoning about expected future
situations,

• an executive/diagnostician to initiate and maintain
activity execution while interpreting sensed events
through reasoning about past and present situations,
and

• a conventional reactive controller to interface with the
spacecraft to implement an activity’s execution.

In addition to needing remote planning and execution
for isolated spacecraft, a trend toward multiple-spacecraft
missions points to the need for remote distributed planning
and execution.  The past few years have seen missions with
growing numbers of probes.  Pathfinder has its rover
(Sojourner), Cassini has its Huygens lander, and Cluster II

is scheduled to launch in 2000 and has 4 spacecraft for
multi-point magnetosphere plasma measurements.  This
trend is expected to continue to progressively larger fleets.
For example, one proposed interferometer mission
[Mettler& Milman 1996] would have 18 spacecraft flying
in formation in order to detect earth-sized planets orbiting
other stars.  Another proposed mission involves 44 to 104
spacecraft in Earth orbit to measure global phenomena
within the magnetosphere.

This paper compares and contrasts 3 ways to distribute
a planner/scheduler amongst a population of spacecraft or
rovers that have separate executive/diagnosticians and
reactive controllers.  The first places the planner/scheduler
on a single platform that remotely commands the others.
The second is more distributed in that it replicates a
planner across the population to let each platform plan its
own activities, but a single platform handles goal
distribution.  The last approach advertises all goals and lets
each platform bid for a goal based on how well its local
planner can satisfy the goal given local information.
These approaches delineate a space of approaches where
the platform that distributes tasks maintains progressively
less information on the entire constellation.

This paper’s sections subsequently describe 3 thought
experiments for multi-platform missions that motivate 8
performance metrics for evaluating approaches toward
continuous task-distribution-based coordination, compare
and contrast 3 coordination methods, discuss related work,
and finally conclude.

2. Multi-Platform Thought Experiments
In order to focus this discussion on distributed autonomy in
space, consider different types of future multi-platform
missions.  There are 4 kinds of such missions depending on
the reason for proposing multiple platforms:

• improved coverage when observing/exploring large
areas (like the number of identical small satellites
with scatterometers proposed for the Ocean Surface
Wind Measurement Program (EOS-5));

• specialized probes with explicitly separate science
objectives (like Cassini with Huygens and Pathfinder
with Sojourner);



• multi-point in-situ sensing for observing large scale
phenomena that are only detectable with multiple
spatially separated in-situ sensors (like for observing
global magnetospheric phenomena with spatially
separated plasma sensors in the Magnetospheric Multi
Scale or Cluster II missions); and

• building large synthetic aperture sensors with many
small spatially separated sensors for imaging very
remote targets (like Constellation-X, Terrestrial Planet
Finder, and TechSat-21).

These reasons for having multiple platforms in a
mission are not exclusive.  For instance, the Air Force’s
TechSat-21 mission concept [Martin&Stallard 1999]
involves a constellation of clusters of platforms.  Each
cluster forms a synthetic aperture for radar sensing, and the
number of clusters depends on the desired global coverage.

2.1. Coordinating Task Distribution
In missions where each probe performs its task in isolation,
the difference between an autonomous multi-platform
mission and many autonomous single platform missions
involves distributing tasks to the different platforms.
While the task distribution for multiple autonomous single
platform missions is determined on the ground, an
autonomous multi-platform mission can distribute and
redistribute tasks remotely.  This feature improves both
distribution quality and robustness by letting the spacecraft
use local information to optimize the initial task
distribution and to redistribute tasks when a spacecraft
suffers an anomaly, unexpectedly finishes a task early, or
detects an unanticipated science opportunity.

As an example of coordinated autonomous task
distribution, consider multiple rovers surveying rocks in an
area on Mars using MISUS [Estlin et al. 1999].   In this
system a Mars lander manages a population of rovers by
analyzing data from past observations, determining new
observations, assigning observation goals to rovers, and
collecting data as each rover moves from rock to rock and
performs its experiments in isolation (fig. 1).  This system
autonomously maximizes science return while minimizing
the execution time of the most heavily tasked rover.

While MISUS focused on a multi-rover scenario,

much of the developed infrastructure applies to any multi-
platform mission with a number of identical platforms that
operate in isolation.  This is includes most of the improved
coverage and specialized probe classes of missions.  As an
example of this generalization, consider replacing the Mars
lander and the rover population with a ground station and a
constellation of RADARSATs like the one illustrated in
figure 2.  Currently the Canada Centre for Remote Sensing
manages a single RADARSAT [CCRS 1998] in a sun-
synchronous orbit.  This satellite can observe any location
around the poles on a daily basis and any location around
the equator in 6 days or less.  To decrease the equatorial
delay time, consider replacing the single satellite with 6
equally spaced RADARSATs.  The resultant constellation
decreases the equatorial delay time to one day.  A system
like MISUS could manage this constellation since each of
the 6 satellites operates independently of the others.

2.2. Coordinating Task Execution
The multi-point in-situ sensing and large synthetic aperture
missions differ operationally from the other 2 classes in
that the separate spacecraft do not operate in isolation.  For
instance consider the Air Force’s TechSat-21 mission
concept (fig. 3).  TechSat-21 involves a constellation of
clusters of spacecraft.  While each cluster functions in
isolation, spacecraft in a cluster have tightly coordinated

FIG 2: Operating modes for one of a constellation of
radar satellites

FIG 3: Operating modes for clusters in TechSat-21
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FIG 1: Coordinating multiple rovers with MISUS



activities.  These activities include tight beam commun-
ications, synthetic aperture radar (SAR), and geolocation.

In many respects coordinated task execution is easier
than coordinated task distribution.  For the smaller
missions designating a master spacecraft that commands
the other (slave) spacecraft as though they were physically
attached solves this problem, but bandwidth restrictions
keep this approach from scale with either the number of
slaves or the complexity of each slave.  Resolving this
scaling issue is outside this paper’s focus.

2.3. Autonomy Architectures
In an earlier paper [Barrett 1999], I described 3 different
autonomy architectures for a constellation of spacecraft
involving leaders, followers, and slaves.  Here I expand
this taxonomy to also include contractors.  The number of
autonomy modules on a spacecraft determines which of the
4 classes it falls into:

• a slave has no modules and is tele-operated by the
reactive control module of another nearby spacecraft;

• a follower has both an executive/diagnostician and a
reactive controller (like many existing spacecraft);

• an contractor has a follower’s components and a
planner/scheduler to optimize local activities (like
DS1’s remote agent experiment); and

• a leader has all four components.

With these 4 classes, we can define a multi-platform
mission’s autonomy architecture by stating the class of
each platform, and how the collection of platforms
coordinate their activity.  In terms of MISUS, the
architecture consists of having the lander lead, and letting
the rovers act as followers or contractors depending on the
desired local autonomy.

Given a multi-platform mission, there are two sets of
metrics for evaluating the acceptability of autonomy
software.  The first set motivates minimizing the amount of

remote autonomy and has 4 metrics:

• the amount of explicit control an operator has over the
constellation’s activities,

• the feasible accuracy of modeling the constellation’s
activities on the ground,

• the autonomy software’s testability, and
• the amount of needed onboard computing power.

While the first set of metrics tend to be maximized by
limiting the amount of autonomy on a constellation, the
second set of 4 evaluation metrics are maximized by
increasing the amount or remote autonomy:

• the platforms’ event response time,
• the required bandwidth between platforms and to

Earth,
• the quality of the downlinked data, and
• the functional redundancy.

3.  Coordinating Multiple Planners
In [Rabideau et al. 1999], others and I compared 3 methods
for coordinating a population of rovers from a central
lander in the MISUS scenario (figure 4).  We used central
planning to manage a population with a leader-follower
architecture, where the leader generates plans that are
subsequently executed by the followers.  In order to assure
each plan’s correctness, the lander needs to acquire large
amounts of state information on the rovers to appropriately
determine if they can execute their plans.

Distributed planning reduces the amount of needed
state information by using a goal distribution planner.  This
planner takes a subset of the rovers’ collective state
information with less precise models of the rovers, and it
produces an abstract plan with enough detail to determine
how to distribute the goal activities among the rovers.  The
lander then transmits goals to the appropriate rovers.

Another way to migrate planner/schedulers onto the
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rovers uses a central auctioneer to distribute goals, and the
rovers use onboard planners with local state information to
determine appropriate bids for each goal as it arises.  This
approach is an instance of the contract network protocol
[Smith 1980, Sandholm 1993] – a commonly used
coordination paradigm within the distributed artificial
intelligence community.  Within a contract net protocol, a
leader announces a task to a set of contractors, each
contractor bids for it, and the leader awards the task to the
contractor with the best bid.

3.1.  Central Planning
The simplest way to extend single-platform spacecraft
autonomy research to autonomous multi-platform missions
involves using a master/slave approach where a single
leader performs all autonomy reasoning.  The slaves only
transmit sensor values to the leader and forward control
signals received from the leader’s reactive controller to
their appropriate local devices.   In this way all spacecraft
are treated as a single multi-platform spacecraft.

Both single and multiple platform autonomous
spacecraft must respond to a (somewhat) dynamic,
unpredictable environment.  In terms of high-level, goal-
oriented activity, a planner needs to modify spacecraft
sequences to account for fortuitous events such as
observations completing early and setbacks such as a
failure to acquire a guide star for a science observation.

The need to rapidly respond to unexpected events
motivates continuous planning, an approach where a
planner continually updates a sequence in light of changing
operating context.  In such an operations mode, a planner
would accept and respond to activity and state updates on a
one to ten second time scale.  CASPER [Chien et al. 1999]
is an example of a continuous planner based on a heuristic
iterative repair approach toward planning [Zweben et al.
1994, Fukunaga et al. 1997].  This approach takes a
complete plan at some level of abstraction and manipulates
its actions to repair detected flaws.  Example flaws would
involve an action being too abstract to execute or many
simultaneous actions with conflicting resource needs.

Making a heuristic iterative repair planner continuous
within a planner/scheduler module results in figure 5’s
algorithm.  The first line assures that the PROJECTION
variable always reflects how the state of a rover, or a
spacecraft, should evolve as its plan executes, and the last
line causes this execution by passing near-term activities to
the executive/diagnostician.

The expected state evolution changes as a plan gets
new goal activities and the perceived state diverges from
expectations.  This divergence is caused by unexpected
exogenous events and activities having unexpected
outcomes. Since a planning model can only approximate
the reality experienced during execution, these unexpected
state changes can always to happen.

At any moment the projection can detect flaws in a
local plan, and lines 2 through 4 select and apply repair

methods to fix these flaws.  For instance, a satellite’s
observation activity can take an unexpectedly long time to
complete.  Depending on the delay, a subsequent
observation may be impossible due to the target being too
far behind the satellite when the observation starts.  A
repair method might fix the flaw by rescheduling the
observation at a later time.

With respect to our evaluation metrics, using a
continuous planner with a master/slave approach toward
multi-platform coordination facilitates allowing a variable
amount of remote autonomy.  At one extreme the
continuous planner is given low-level command sequences
and can only apply a go-to-safe-mode repair method upon
detecting a flaw.  This extreme maximizes the first set of
metrics.  Another extreme reduces the first set of metrics
while improving the second set.  Here the planner is only
given a set of abstract activities and uses local information
and heuristics improve event response time and the quality
of downlinked data.  While functional redundancy and
inter-platform bandwidth are unaffected by moving from
one extreme to another, turning the slaves into followers
increases redundancy and reduces bandwidth.  Due to how
easily this change can degrade the event response time,
turning slaves into followers is an active research topic in
the multi-agent research community [Tambe 1997].

3.2.  Distributed Planning
Turning followers into contractors raises issues regarding
how to coordinate multiple planners.  In distributed
planning, this coordination is achieved through using a
continuous goal distribution planner on one platform, and
this planner continuously manages the distribution of goals
based on continuously updated partial information on the
other platforms.  For instance, the distribution planner
might model rovers in a multi-rover scenario as points on a
plane where each rover can travel in a straight line from
one goal activity’s observation target to another’s.

With this abstract characterization, the distribution
planning problem becomes a Multiple-Traveling Salesman

Given: a PLAN with multiple activities
a PROJECTION of PLAN into the future

1. Revise PROJECTION using the currently
perceived state and new goal activities from the
mission manager.

2. Heuristically choose a plan flaw found in
PROJECTION.

3. Heuristically choose a flaw repair method.
4. Use method to alter PLAN & PROJECTION.
5. Release relevant near-term activities in PLAN to

the real-time system.
6. Go to 1.

FIG 5:  Continuous planning using heuristic iterative
repair



Problem (MTSP) [Johnson&McGeoch 1997] where the
members of a sales team must collectively visit each of a
set of cities and the maximum traveling time of the
salesmen is minimized.  While this is a NP-Complete
problem, there are fast greedy approaches that find slightly
sub-optimal solutions.  By encoding one of these
approaches into our distribution planner, the lander can
both determine how to distribute the goal activities and
provide a rough estimate on the order in which a rover
should visit its targets to perform the goal activities.

With respect to our evaluation metrics, distributed
planning facilitates variable autonomy both with the
ground and across the platforms.  Minimizing autonomy
across platforms involves making the distribution planner
use full information and generate low level action
sequences for the other platforms, which can only execute
their actions.  This restriction turns distributed planning
into the previously evaluated central planning approach.

Maximizing autonomy on the contractor platforms has
the same effects as maximizing autonomy for the central
planner, but also adds a reduction to inter-platform
bandwidth needs.  The lead platform no longer needs to
maintain full state information, and each platform’s
planner can locally respond to events without informing
the leader.  Now a contractor can resolve a flaw by either
quietly shuffling its local activities or reporting failure to
the leader upon deleting a local activity.  This quiet shuffle
reduces bandwidth needs while failure reporting facilitates
moving activities between platforms via the leader’s
continuously repairing its goal distribution plan.

3.3.  Contract Networks
Minimizing the amount of continuously updated contractor
information on the leader results in taking a contract
network approach toward coordinating multiple planners.
Here a leader advertises each goal and each contractor bids
on the goals based on its local information.  To respond to
an unexpected event, a contractor will either quietly shuffle
its activities or delete a local activity and report failure to
the leader.  Upon hearing of a failure, the leader can re-
advertise the failed goal for auction.  Notice that there is no
need for continuously updated partial contractor
information – the leader does not need to know anything
about the contractors to auction a goal.

As shown in figure 4, using a contract net protocol to
implement a greedy solution to the MTSP involves making
the lander take goal activities and incrementally advertise
them to all rovers.  Upon receiving a task, a rover uses an
onboard planner to try to fit a solution to the goal activity
into its current schedule.  Upon succeeding, a rover bids its
total projected travel distance upon including the new
observation. Rovers that fail to insert the task within a time
limit do not participate in the auction.  Upon receiving all
bids, the lander awards the task to the rover with the
smallest bid.  By bidding the total distance the rovers

minimize the maximum rover travel distance – an MTSP
solution.

With respect to our evaluation metrics, letting an
operator restrict the platforms that can bid for certain
activities results in a system with variable autonomy.  At
one extreme the operator can specify a low level activity
sequence for each platform, and at the other the leader gets
a set of high level goals that can go to any platform.

As before, the first extreme scores best on the
autonomy minimization metrics and the second scores best
on the autonomy maximization metrics.  While this
approach has lower inter-platform bandwidth needs than
the other approaches, it has more computational overhead
and assumes a greedy approach toward optimization.

4. Related Work
While there is a large literature on cooperating robots, most
focuses on behavioral approaches that do not explicitly
reason about partitioning goals and planning courses of
action.  Three notable exceptions are GRAMMPS
[Bumitt&Stentz 1998], MARS [Fischer et al. 1995], and
RETSINA [Paolucci et al. 1999].  GRAMMPS is a system
coordinating multiple mobile robots visiting locations in
cluttered partially known environments.  This system
shares quite a bit similarity with our central goal allocation
with distributed planning architecture for rovers. Both
systems solve an MTSP problem to distribute targets, and
both have low level planners on each mobile robot, but
GRAMMPS focuses on path planning while learning a
terrain instead of focussing on resources and exogenous
events.

MARS on the other hand is a cooperative transport-
ation scheduling system that shares many similarities with
the contract net approach.  Once again the differences
involve a focus on multiple resources, exogenous events,
and variable autonomy.

Finally RETSINA uses peer-to-peer coordination with
an HTN planner for local planning.  While the use of
heuristic iterative repair here points to one difference
between the approaches.  The main difference involves
RETSINA’s not modeling known exogenous events and
not providing default mechanisms for initially distributing
goals and transferring goals to resolve execution failures.

5. Conclusions
This paper compared and contrasted 3 continuous task-
distribution-based coordination schemes for commanding
multiple platforms with collective goals instead of goals or
command sequences for each platform: central planning,
distributed planning, and contract networks.  All schemes
supported variable autonomy and were evaluated with
respect to 8 different metrics.  At the lowest autonomy
setting, all schemes devolved into commanding the
platforms with low level sequences, and at the highest
autonomy setting the schemes differed primarily in terms



of needed onboard computing, inter-platform bandwidth,
and redundancy.  While central planning kept all
computing on the leader, distributed planning spread the
computing overhead across all platforms.  The result was a
decrease in inter-platform bandwidth needs and an increase
in redundancy with an unchanging total computing
overhead.  Contract networks further improved the
bandwidth needs and redundancy, but this scheme also
increased the total computing overhead by letting each
platform see and bid for each goal.

Reasoning about incremental autonomy for distributed
planning and contract networks results in a realization that
these approaches toward coordinating multiple planner/
schedulers can be combined.  The resultant approach
would used a goal distribution planner, but would only
collect enough information to limit the number of
platforms that participate in an auction.  One avenue for
future work involves building a coordination mechanism
that spans the space between contract networks and
distributed planning. Another future research avenue
involves generating joint activities for multiple spacecraft/
rovers to collectively satisfy and would extend our
approach to handle constellations of clusters of platforms
(in TechSat-21).  Finally, a third research direction
involves making the rovers/orbiters compete for shared
resources, like communications opportunities.
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