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Abstract—The Onboard Autonomous Science Investigation 
System (OASIS) was used in the first formal demonstration 
of closed loop opportunistic detection and reaction during a 
rover traverse on the FIDO rover at NASA’s Jet Propulsion 
Laboratory. In addition to hardware demonstrations, the 
system has been demonstrated and exercised in simulation 
using the Rover Analysis, Modeling, and Simulation 
(ROAMS) planetary rover simulator [1]. We discuss several 
system enhancements including new planning and 
scheduling capabilities and image prioritization. We also 
describe the new end-of-traverse capability that includes 
taking a partial panorama of images, assessing these for 
targets of interest, and collecting narrow angle images of 
selected targets. Finally, we present several methods for 
estimating properties of rocks and provide a comparative 
assessment. Understanding the relationship of these 
methods is important to correctly interpret autonomous rock 
analyses performed during a traverse.  1 2 
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1. INTRODUCTION 

The Mars Exploration Rovers (MER) continue to make 
history as they endure the martian winter and send back 
valuable scientific data.  In early November 2006, the Spirit 
MER reached an important milestone as it survived 1000 
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martian days (sols),  traveling  more than 6,876 meters (4.27 
miles) [Figure 1].  Although the Opportunity MER has not 
been on Mars as long as Spirit, it has out-traveled its twin 
and  had logged an even more astonishing 9,406 meters 
(5.85 miles).  With hopes and expectations for the mission 
to continue well into the future, scientists are warming up to 
the possible benefits that autonomous operations might 
bring to the table. 

There are a number of autonomous rover capabilities 
currently in development for future in-situ missions.  The 
capability we focus on in this work, onboard autonomous 
rover science, continues to grow in importance as rover 
lifetime and travel distances increase. OASIS [2-6], an 
Onboard Autonomous Science Investigation System, is a 
JPL-managed project designed to maximize mission science 
on rover missions with long traverses. 

OASIS is designed to operate onboard a rover identifying 
and reacting to serendipitous science opportunities.  Science 
opportunities can include detection of dust devils and 
clouds [6, 7] and novel rocks that the rover has not seen 
before [3]. OASIS analyzes data the rover gathers, and then 
prioritizes the data based on criteria set by the science team. 
 At the next opportunity for transmitting data back to Earth, 
the data is already prioritized – ensuring that the most 
valuable data is sent first. 

As OASIS is working to prioritize the data, it is also 
searching for specific targets it has been told to find by the 
science team [3].  If one of these targets is found, it is 
identified as a new science opportunity and a “science alert” 
is sent to the planning and scheduling component of 
OASIS. After reviewing the rover’s current operational 
status to ensure that it has enough resources to complete its 
traverse and act on the new science opportunity, OASIS 
changes the command sequence of the rover.   

The rover is instructed to stop its current traverse, locate the 
rock that triggered the science alert, and take additional data 
(e.g., color image, closer grayscale image, spectrometer 
reading) on that rock.  In addition, the system now enables 
the rover to either turn and collect data on the identified 
target rock or to drive to the target so that closer 
measurements can be collected.  Once it has completed this 
additional measurement, the rover reverts back to its 
original plan and continues on its traverse.     
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A new end-of-day capability was added to OASIS this year. 
After the rover has completed the image captures of its final 
location at the end of the sol, OASIS can run these images 
through its onboard rock detection program(s) and identify 
targets for a remote sensing instrument (such as a close-up 
panoramic image or a Laser Induced Breakdown 
Spectrometer, or LIBS).  As resources permit, OASIS can 
instruct the rover to point to these targets, take data and 
return the data to Earth at its next communication cycle. 

The OASIS system includes three primary components: 
feature extraction, data analysis and prioritization, and 
planning and scheduling.  In Section 2, we briefly describe 
the system and these components.  Section 3 addresses the 
development of Rockster, an algorithm developed to 
segment rocks in rover imagery. The importance of using 
multiple rock finders and setting rock finder parameters is 
outlined in Section 4, while Section 5 discusses using the 
results of these rock detectors on autonomous target 
selection and sampling.  In Section 6 we discuss OASIS 
integration with Maestro. Section 7 describes how the 
ROAMS rover simulation environment supports the 

development, testing and experimentation of the OASIS 
system.  Section 8 discusses RockIT, the OASIS Rock 
Identification Toolkit, which is a mature, cross-platform, 
graphical program originally designed to help geologists 
rapidly and accurately label rocks (or particles) in images.  
Finally, in Section 9 we describe related work and conclude 
with a summary in Section 10.    

2. OASIS OVERVIEW 

To assess and subsequently prioritize the scientific value of 
a set of collected images, the information within the images 
must first be extracted.  A geologist in the field gets 
information about a site by identifying geologic features 
including the albedo3, texture, shape, size, color, and 
2                                                           
3 Note that we are using the term albedo to refer to the brightness of a rock 
in the image.  Technically this is the DN value; we are not calculating the 
true albedo of the rock which would require taking the incident solar flux, 

Figure 1  As of sol 986 (Oct. 11, 2006), Spirit's total odometry logged in at 6,876 meters (4.27 miles). Spirit passed its 
1000 sol milestone in this location, as the milestone occurred during a three week solar conjunction (the rover did not 
move because during solar conjunction the sun interferes with transmissions between Mars and Earth). Image credit: 
NASA/JPL/Cornell/USGS/New Mexico Museum of Natural History and Science. 
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arrangement of rocks, and features of the topography, such 
as layers in a cliff face.  The geologist analyzes and assesses 
this data, and then initiates some action based on the 
analysis, such as taking a sample or taking some additional 
measurement of an interesting rock. 

For an autonomous system to help a remote geologist 
investigate a traversed region, the system must be able to 
perform, albeit in a very simple way, these same types of 
functions.  Clearly, one critical function is to identify rocks 
or other objects that may be of interest for the scientist. 

There are three major components that comprise OASIS: 

• Extract Features from Images: Detects objects of 
interest and provides a characterization of their 
properties.  This module both locates rocks in the 
images and extracts rock properties (features) 
including shape, texture and albedo. Image 
analysis, when applied to a sequence of images 
taken in a stationary position for dust devil 
observation campaigns, can also be used to identify 
the motion of a dust devil moving across the field 
of view [7]. 

• Analyze and Prioritize Data: Uses the extracted 
features to assess the scientific value of the 
planetary scene and to generate new science 
objectives that will further contribute to this 
assessment. This module consists of three separate 
algorithms that analyze the collected data and 
prioritize the rocks.  A new set of observation 
goals is generated to gather further data on rocks 
that either conform to the pre-set specifications of 
the science team, or are so novel in comparison to 
the other rocks, that another data measurement may 
be required.  

• Plan and Schedule New Command Sequence:  
Enables dynamic modification of the current rover 
command sequence (or plan) to accommodate new 
science requests from the data analysis and 
prioritization module.  A continuous planning 
approach is used to iteratively adjust the plan as 
new goals occur, while ensuring that resource and 
other operation constraints are met.  

3. ROCKSTER 

Rockster [8] is an algorithm developed to segment rocks in 
rover imagery. Rockster has been successfully integrated 

                                                                                                  
the orientation of the rock facet, and the calibration of the camera into 
consideration. 

into a number of high-level demonstrations including the 
SOOPS year end demonstration (Science Operations on 
Planetary Surfaces [9] – a JPL interdisciplinary task to 
evaluate technology developments for their potential to 
make significant improvements in the overall science return 
of future missions) and live exercises of the 
OASIS/CLARAty [10,11] software carried out with the 
FIDO Rover in the JPL Mars Yard. 

Figure 2 provides a high-level view of the steps involved in 
the algorithm. Like several other attempts at automatic rock 
segmentation (e.g., [5, 12]), the Rockster algorithm focuses 
on intensity edges in grayscale imagery. Rockster initially 
locates partial boundary contours of rocks using a procedure 
similar to the well-known Canny edge detector [13]. In 
particular, an intensity gradient is calculated over the image; 
ridges in the intensity gradient are linked together using 
non-maximum suppression, hysteresis thresholding, and 
edge-following yielding a set of raw contours. 

This initial set of contours does not directly provide a usable 
segmentation of the rocks from the background due to 
various problems.  These include: spurious contours from 
the sky-ground boundary (horizon line), texture within 
individual rocks, texture present in the background,  
incorrect linking choices at the junctions between contours, 
and unclosed contours around an object due to gaps in the 
gradient information (for example, areas along the rock 
boundary where the rock intensity and background intensity 
are too close to reliably separate). Rockster attempts to 
resolve these problems by splitting the initial contours into 
low-curvature fragments. Potential T-junctions that were 
missed by the edge detector are identified and used to 
further split fragments into even smaller pieces. A gap-
filling mechanism is then applied to add new contour 
fragments between existing fragment endpoints. The final 
step is to regroup the edge fragments into coherent 
contours, which is accomplished through background 
flooding. Conceptually, water is poured into the image from 
the sides but the water is not allowed to cross over any edge 
fragments; thus, regions that are totally enclosed by edge 
fragments remain "dry" while other areas become "wet". 
Extracting contours around the dry areas yields the final 
rock segmentation. 
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4. MULTIPLE ROCK FINDERS AND SETTING 

ROCK FINDER PARAMETERS 

The OASIS system is designed with flexibility to allow it to 
be deployed on different rover platforms.  In particular, we 
have used OASIS on the FIDO prototype rover and on the 
ROAMS (Rover Analysis, Modeling, and Simulation)4 
high-fidelity simulated rover.  In both of these deployments, 
OASIS analysis algorithms were used on images obtained 
from hazard avoidance cameras and navigation cameras.  
Each type of camera, and each rover deployment, has 
differences in imaging and terrain characteristics that 
require minor parameter tuning. 

There are two main types of parameters that we adjust, 
depending on the rover and cameras: crop boundaries and 
stereo vision settings.  The crop boundaries are used to cut 
out regions of the image in which we do not want to find 
rocks.  One example of this is to address artifacts in the 
image rectification process.  As part of image processing, 
4                                                           
 

the images are rectified to remove radial distortion and align 
the left and right images in preparation for stereo range 
finding.  This rectification process introduces artifacts in the 
form of black boundaries on the edges of images.  Cropping 
is used to remove these regions from the image.  For images 
obtained from hazard avoidance cameras, we also use crop 
boundaries to exclude the upper region of the image in 
which stereo quality is typically reduced. 

The second type of parameter settings has to do with tuning 
stereo vision processing to deal with differences in hazard 
avoidance cameras and navigation cameras as well as the 
difference in terrain texture in the ROAMS simulation as 
compared with the JPL Mars Yard.  The stereo vision 
settings include pyramid level, blob size and window sizes. 

In addition to tuning parameters, we also support the 
application of different rock finding algorithms in different 
settings.  In certain situations we want a more conservative 
classification of rocks in an image.  That is, we want to 
minimize the number of false rocks that are identified.  For 
example, when selecting rocks for autonomous targeting, it 
is important that we have high confidence in selecting areas 
of the image that actually contain rock.  We have found the 
RockFinder algorithm [12] to have a low occurrence of 
false positives and, thus, we apply it for this type of 
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Figure 2  High-level view of the steps involved in the Rockster algorithm. 
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situation.  For other applications, such as data 
summarization and novelty detection, we are interested in 
processing a large number of rock candidates to reduce the 
chance of missing something of particular interest.  In this 
situation, we are willing to allow more false rocks in order 
to collect a wider range of input for novelty detection.  We 
have found the Rockster algorithm to be well-suited for this 
type of application. 

5. AUTONOMOUS TARGET SELECTION AND 

SAMPLING 

Another application of the OASIS system is to provide 
autonomous targeting for science measurements that cannot 
be easily selected in advance. A number of rover remote 
sensing instruments have a very narrow field-of-view and 
thus require selection of specific focused targets for 
sampling. Such instruments include the MER Mini-Thermal 
Emission Spectrometer (mini-TES), the Mars Science 
Laboratory (MSL) ChemCam spectrometer, which performs 
Laser-Induced Breakdown spectroscopy (and is planned for 
launch in 2009), and infrared point spectrometers. Targeting 
these instruments by mission personnel on Earth currently 
requires a lengthy process. The typical scenario for 
selecting targets is to manually identify the targets using 
data that has already been downloaded on a previous sol. 
Thus, after reaching an end-of-day location, the rover must 
sit and wait until images can be analyzed and new 
measurement commands are uplinked (which at best will 
happen on the next sol).  

By analyzing image data onboard, OASIS can 
autonomously select targets for these instruments and 
execute a set of measurement activities that do not exceed 
current rover resources.  These techniques could be used, 
for example, on the MSL mission to select targets for the 
ChemCam instrument to sample (Figure 3). 

To select potential targets during field testing, an image 
panorama of the surrounding area is taken.  Using the 
RockFinder algorithm, rocks in the scene are autonomously 
identified. Next, a subset of these rocks is selected and 
prioritized based on scientist-selected criteria using the 
OASIS target signature algorithm. For instance, the target 
signature could be based on rock shape, albedo or size. 
Once a subset of target rocks is identified, points on these 
rocks are selected as specific instrument targets. Targets can 
also be prioritized based on their proximity or closeness to a 
pre-specified set of target features. For example, if light 
albedo rocks are preferred, the lightest colored rocks would 
be assigned the highest priority for sampling.  

Since only a limited amount of time or resources may be 
available to take these measurements, the OASIS planning 
and scheduling subsystem is used to schedule only 
measurements that can be safely executed based on the 
rover health and current state. Currently, an iterative 
optimization approach is used to schedule additional science 
measurements within the rover’s current command 
sequence. In this approach, science measurements that have 
been selected by onboard data analysis are added to the plan 
and the planner attempts to accommodate each 
measurement. If not all additional measurements can be 
added due to resource or other constraints, the planner 
iteratively deletes the lower priority measurements first. 
Typical constraints include a limited time window within 
which to add end-of-day measurements, a limited amount of 
rover energy for that sol (which may have fluctuated from 
predicted levels due to activities earlier in the day), and a 
limited amount of onboard memory to store science data.  

To test OASIS on this application, we have done 
considerable testing with the FIDO rover. For testing, the 
rover was commanded to drive to an end-of-day location, 
where it took a full (or partial) panorama with the rover 
navigation cameras. Images were then analyzed by OASIS 
to locate rocks and identify targets. For this test, OASIS 
used a target signature which gave preference to targeting 
larger rocks, as suggested by the MSL ChemCam PI. 
Measurement requests for a subset of identified rocks were 
then sent to the planning subsystem. 

Figure 3: OASIS selects five potential targets for 
the ChemCam instrument to sample from an 
image taken on the MER mission. Autonomously 
selecting targets vs. blind sampling greatly 
increases the chances of accurately targeting a 
rock. 
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Once the new measurement requests are received, the 
OASIS planner attempts to schedule as many new 
measurements as possible given rover constraints.  New 
measurements are executed with the FIDO panoramic 
cameras, which provide an example of a limited field-of-
view (FOV) instrument capable of making high resolution 
measurements of very specific target areas.  Figure 4 shows 
an example of a large rock identified in a navigation camera 
image and the resulting panoramic camera image.  This 
scenario was run successfully with FIDO using various rock 
configurations and onboard resource levels. 

6. OASIS AND MAESTRO 

As a preliminary demonstration, some the capabilities of 
OASIS have been integrated with Maestro, the science 
visualization and planning tool in use on the Mars 
Exploration Rovers mission [14].  The integration of 
Maestro allows users to design plans for execution on the 
rover and to visualize collected data.  The initial integration 
enables users to command aspects of the OASIS system. 
First, a command to turn autonomy on and off was added to 
the command set in Maestro.  Second, the capability to 
select the criteria to indicate high priority rock properties 
for downlink prioritization was added.  Finally, while the 
rover is capable of collecting more data than can be 
downlinked there must be a mechanism for collecting this 
data.  In this demonstration, the capability to command the 
collection of additional images for analysis by the OASIS 
system was incorporated into Maestro.  Users can specify 
the pattern and quantity of additional images for analysis.    
Thus, when a traverse is planned users specify whether or 
not to perform autonomous science during the traverse.  If 
they choose to activate autonomous science, they can design 
a sequence of mast camera acquisitions to acquire data for 
autonomous science as well as specify the frequency at 
which the rover should run this sequence.  When data from 
the traverse is returned, users can view not only the standard 
Maestro downlink products, but also the rockfinder results 
on downlinked images.  For more discussion on 
experiments using OASIS in an operational setting with 
Maestro and the ROAMS system conducted as part of the 
SOOPS task see [9]. 

7. OASIS AND ROAMS 

To support development and experimentation, we have 
deployed the OASIS system in the ROAMS rover 
simulation environment [1].  ROAMS provides high-fidelity 
modeling of rover dynamics and terrain environment.  The 
integration with ROAMS has been performed at the level of 

CLARAty [10,11] actuators and sensors and, as a result, 
from a software standpoint deploying OASIS in ROAMS is 
identical to deploying OASIS on a physical rover.  For 
example, OASIS uses the same interface code to command 
the rover wheels and mast and to acquire images from a 
camera whether on a simulated or physical rover.  ROAMS 
has been a powerful tool in assisting with the development 
and debugging of the OASIS system.  As described in 
Section 4, ROAMS has also supported experimentation to 
assess the impact autonomous science has on conducting 
surface operations for future missions. 

8. ROCKIT 

The OASIS Rock Identification Toolkit (RockIT) is a 
mature, cross-platform, graphical program originally 
designed to help geologists rapidly and accurately label 
rocks (or particles) in images.  As images are labeled, 
RockIT reports both individual rock statistics and overall 
scene statistics.  Golombek et al. [15] used RockIT to 
compare rock size distributions at several locations along 
the Spirit traverse.  This past year, we have made 
improvements to RockIT so that it can serve as a visual 
front-end to the OASIS system.  We should stress that 
RockIT is by no means required to use OASIS, but when 
available it provides a window into the inputs and outputs 

Figure 4: An example of a large rock 
autonomously selected and targeted by a 
limited FOV instrument on the FIDO rover 
(in this case, a high resolution panoramic 
camera). 
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of the OASIS system.  In this section, we provide a brief 
description of RockIT and how it supports OASIS 
capabilities.  

The RockIT graphical user interface is comprised of four 
primary views: a main image display, a scrollable list of 
thumbnail images, a data summarization table, and an 
overhead map display. The main image display shows 
images, range data, and rock detections (Figure 5).  When 
range data (e.g. derived from a stereo image pair) is 
available, RockIT will provide, as the mouse passes over 
each pixel, both the 3D (x, y, z) coordinates and the 
distance to that pixel in meters.  For some parts of each 
image, range data may not be available, or range data 
beyond a certain distance may be too inaccurate.  RockIT  
can mark these bad range regions with a translucent color 
(e.g., yellow) overlay.  Rock detections are drawn on top of 
the composite image / range display.  The combination of 
image data, range data, and detected rock detections forms a 
single dataset. 

During a rover traverse, a sequence of datasets (images, 
range data, and rock detections) is collected.  RockIT 
summarizes this sequence in its thumbnail view.  The 
images of the traverse are rendered as image thumbnails and 
displayed in chronological order.  Selecting a particular 
thumbnail will display the full image, as well as range data 

overlay and rock detections for that image in the main 
display area.   

The data summarization view provides valuable features 
and statistics about each rock in the entire traverse.  The 
statistics are derived by the underlying OASIS system, and 
while too numerous to describe in their entirety, include 
rock albedo, size, and shape features.   For size, when range 
data is not present, 2D pixel area is reported.  When range 
data is available, rock length and width are calculated.  For 
shape statistics, RockIT performs fast, numerically stable, 
least squares ellipse fits [16] to each trace and reports the 
major and minor axes, eccentricity, and orientation of the fit 
ellipse.  OASIS also reports the (x, y, z) location of each 
rock, which is useful for constructing an overhead map of 
the rover’s world. 

The ‘overhead map’ view provides a meaningful way to 
summarize a rover traverse in a single image (see Figure 6). 
 The (x, y) location, albedo and size of each rock are used to 
create the map.  Rocks on the maps are represented as 
colored ellipses.  Each ellipse is centered at the (x, y) 
location of the rock (z is omitted for this simple 2D map).  
The ellipse major and minor axes are functions of the rock’s 
size, and the ellipse is colored (filled) according to the 
rock’s average albedo. In keeping with intuitive 
correspondence among views, selecting a rock in the 

  

Figure 5.  The OASIS Rock Identification Toolkit (RockIT) graphical user interface is comprised of four primary views: a 
main image display, a data summarization table, a scrollable list of thumbnail images (collected along a rover traverse), 
and an overhead map display (not shown; see Figure 6).  An OASIS rock detection result is highlighted in the three views. 
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overhead map or data summarization table will “jump” a 
user to the image containing that rock and highlight it. 

The most recent RockIT development ties the four views 
together to simulate data downlink prioritization.  RockIT 
can run various OASIS downlink prioritization schemes 
(including key target signature prioritization).  For images 
that fall below the downlink prioritization threshold, 
RockIT covers the corresponding image and thumbnails.  
All the summary data provided by the table and overhead 
map, as well the user interaction and data linkage, still 
function as normal.  The only change is that if a rock is 
selected in an image that did not meet the downlink criteria, 
a blank (black) image is displayed with a message that reads 
“Not Downlinked” (see Figure 7).  We’ve found this 
simulated downlink feature to be particularly helpful in 
conveying the utility of OASIS to potential customers.  
Even if a particular image is not available, the data 
summarization table and overhead map provide a wealth of 
information about what was encountered during a traverse. 

9. RELATED WORK 

OASIS successfully synthesizes autonomous feature 
detection, geologic feature analysis, resource management, 
and execution on a physical rover testbed.  It is unique in 
this high degree of autonomy and in the integration between 
planning, feature detection, and target selection.  However, 
other previous projects have also investigated component 
technologies for autonomous science.   

Researchers have developed several feature detection 
methods for terrestrial and Mars images.  As early as 1999,  
preliminary OASIS feature extraction methods for textural 
image analysis and identification of key spectral signatures 
were being demonstrated [17], while Marsokod rover tests 
used shadow and edge features to identify rocks and strata 
in rover imagery [18].  This work also pioneered horizon 
detection for sky removal.  The following year the Nomad 
Antarctic Meteorite Expedition (RAMS) demonstrated an 
autonomous search for meteorites on an Antarctic plateau 
[19 20]  Here a robot platform used simple image 
segmentation to recognize rocks against glacial ice.  
Researchers have developed several rock detection and 

Figure 6.  The same rock highlighted in Figure 5 is shown on the overhead map view. Rocks on the maps are represented 
as colored ellipses.  Each ellipse is centered at the (x, y) location of the rock (z is omitted for this simple 2D map).  The 
ellipse major and minor axes are functions of the rock’s size, and the ellipse is colored (filled) according to the rock’s 
average albedo. 
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classification algorithms since these initial efforts.  Some 
more recent work has employed stereo in 3D segmentation 
of rocks for instrument placement applications [21].     
Machine learning-based approaches to detecting rocks in 
rover imagery have also been demonstrated [22].   

Recent work provides evidence that automatic data analysis 
of detected features can extract meaningful geologic 
properties.  The LITA Atacama rover expedition 
demonstrated that rock detection and classification 
strategies could characterize local surface geology in desert 
environments [23].   Laboratory studies show that under 
controlled conditions automatic feature extraction 
techniques already compare favorably to human geologists 
in quantifying some of rocks' visual attributes like 
angularity [24].   Autonomous classification of spectra for 
onboard analysis has also been demonstrated [25].  This 
growing body of research suggests that autonomous feature 
extraction can yield meaningful geologic analyses. 

A number of planning and executive systems have been 
used for robotic applications. One approach directed 
towards rover command generation used a Contingent 
Planner/Scheduler (CPS) that was developed to schedule 
rover science operations using a Contingent Rover 
Language (CRL) [26]. CRL allows both temporal flexibility 
and contingency branches in rover command sequences.  

Contingent sequences are produced by the CPS planner and 
then are interpreted by an executive, which executes the 
final plan by choosing sequence branches based on current 
rover conditions. As compared to OASIS, only the 
executive is onboard the rover; planning is a ground-based 
operation and does not involve re-planning. Since only a 
limited number of contingencies can be anticipated and 
incorporated into the plan, CRL does not provide as much 
flexibility as OASIS when adjusting the sequence in 
response to unexpected events.  

The LAAS-CNRS lab robotic control architecture [27] also 
uses onboard planning and execution to create initial plans 
and to provide re-planning capabilities. However, as 
compared to CASPER, the IxTeT planner uses a partial 
order CSP-based planning approach, which can require 
larger amounts of time for re-planning since a valid plan 
must be found at every search step. Further this system has 
not addressed the handling of opportunistic science and 
interacting with an onboard data analysis system.  

Other similar approaches include Atlantis [28] and 3T [29], 
which used a deliberative planner and an executive on top 
of a set of reactive controllers. These approaches only use a 
batch planning approach in a limited fashion and do not 
provide online re-planning or support for opportunistic 
science.  

Figure 7.  RockIT can also simulate OASIS data downlink prioritization.  The same rock highlighted in Figures 6 and 7 
is now in an image whose downlink priority was too low. Even though this image is not available, the data 
summarization table and overhead map provide a wealth of information about this particular rock. 
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The Autonomous Sciencecraft Experiment (ASE) [30] has 
demonstrated the capability of planning and data analysis 
systems to coordinate the behavior of the EO-1 Earth 
orbiting satellite. The Remote Agent Experiment (RAX) 
[31] demonstrated the ability of an AI planning and 
execution system to generate and execute plans onboard the 
NASA Deep Space One (DS1) spacecraft. RAX, however, 
used a batch approach to planning and could not 
dynamically re-plan. Further, since RAX and ASE were 
applied to spacecraft, neither handle the large uncertainty 
inherent in surface navigation and science.    

10. SUMMARY  

Onboard autonomy and science data analysis will have a 
significant impact on future landed missions.  A number of 
elements of the OASIS system are being considered for use 
on current and future rover missions.  The OASIS system is 
continuing to expand its capabilities for opportunistic 
science by increasing functionality in the feature extraction, 
data analysis and planning and scheduling components.  
Rock detection remains a non-trivial task, and will require 
continued investigation in the future.  Future directions 
include using rock density maps and other tools to identify 
other scientifically interesting features such as geologic 
contact boundaries found during a traverse.    
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