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Abstract 
 

We discuss a current, ongoing demonstration of in-
situ onboard detection in which the Earth Observing-1 
spacecraft detects surface sulfur deposits that 
originate from underlying springs by distinguishing 
the sulfur from the ice-rich glacial background, a good 
analogue for the Europan surface.   

In this paper, we describe the process of developing 
the onboard classifier for detecting the presence of 
sulfur in a hyperspectral scene, including the use of a 
training/testing set that is not exhaustively labeled, i.e. 
not all true positives are marked, and the selection of 
12, out of 242, Hyperion instrument wavelength bands 
to use in the onboard detector.   

This study aims to demonstrate the potential for 
future missions to capture short-lived science events, 
make decisions onboard, identify high priority data for 
downlink and perform onboard change detection.  In 
the future, such capability could help maximize the 
science return of downlink bandwidth-limited missions, 
addressing a significant constraint in all deep-space 
missions.  

 
 
1. Introduction 
 

The Jovian moon Europa represents an intriguing 
potential for life within our solar system.  Yet there are 
considerable challenges facing any mission to find 
such habitats.  One such challenge is that of efficiently 
searching for evidence of life given limited ability to 
return data, roundtrip light time delays, and the 
anticipated scarcity and limited scale of indicators. We 
describe an active demonstration of onboard data 
analysis for detection of surface sulfur deposits that 
originate from underlying springs.  This demonstration 
serves as a key component in validating that such 
signatures can be detected from orbit and that onboard 
decision-making capability could be used to increase 
the efficiency of such a search. 

EO-1’s existing Autonomous Sciencecraft [1] 
onboard decision-making capability enables the 
spacecraft to perform onboard analysis of data from 
the Hyperion hyperspectral instrument and use positive 
or negative detections to take further actions (such as 



repeat imagery).  Closing the control loop onboard 
greatly increases the efficiency of search and 
monitoring because data lacking events/signatures of 
interest need not be downlinked.   

We have expanded onboard analysis capability by 
adding classifiers to distinguish sulfur from the ice-
rich glacial background on the spacecraft.  Building on 
previous work that produced a snow, water, ice, and 
land (SWIL) pixel classifier [2, 3], we have developed 
a Support Vector Machine (SVM) to automatically 
detect the presence of sulfur in a hyperspectral scene.  
We describe the process of developing this detector, 
including the use of a training/testing set that is not 
exhaustively labeled, i.e. not all true positives are 
marked.  Restricted onboard capability limits any 
processing to 12 of the total 242 Hyperion instrument 
wavelength bands.  A key design choice for a classifier 
is which 12 bands to use. We empirically compare 
performance when using manually selected bands to 
that obtained when using bands chosen by automated 
feature selection techniques.    

Historically, spacecraft collect data and transmit it 
to Earth for analysis.  There are two primary 
motivations for analyzing science data onboard a 
spacecraft.  The first is that onboard analysis can 
enable prioritization of data by identifying the highest 
priority data for transmission. This is particularly 
relevant for the (common) situation in which downlink 
bandwidth is severely limited and spacecraft 
instruments are capable of collecting more data than 
can be transmitted to Earth.   By collecting data at the 
capacity of the instrument and analyzing it onboard, 
there is significantly increased opportunity to identify 
rare features or events of interest.  The second 
motivation for onboard science data analysis is to 
enable the detection of and reaction to dynamic events.  
For example, with an eight-hour round trip light time, 
timely reaction to an event on Europa would be 
possible only if the event were detected onboard and 
the spacecraft equipped to react.    

There are a number of challenges to analyzing 
science data onboard a spacecraft including limited 
processing speed, minimal memory, a restricted 
analysis/reponse timeframe, and the lack of calibrated 
data available onboard.  In some cases, such as the 
domain described in this paper, it is only possible to 
access onboard a limited portion of the collected data. 

Considerable effort has been devoted towards 
autonomous rover science including at JPL [4, 5], 
NASA Ames [6], and Carnegie Mellon University [7, 
8].  In contrast to the current work, these efforts have 
focused on issues relevant to surface operations.  
Another related effort is that of the EO-1 sensor web 
[9] in which the EO-1 satellite is networked with other 

satellites and ground sensors via software and the 
internet. The current work is focused on detection of 
events on a single spacecraft, the results of which 
could potentially be used to trigger other assets.  
 
2. Europa and Borup Fiord Pass, Canada  

In the Borup Fiord Pass on Ellesmere Island in the 
Canadian High Arctic, sulfur-rich waters seep from the 
top of a 200-meter-thick glacier precipitating deposits 
of sulfur, gypsum and calcite that stain the ice. The 
physical and chemical conditions of the spring water 
and surrounding environment, together with 
mineralogical and isotopic signatures, suggest that 
micro-organisms are active in the system [10].  This 
site and nearby regions may provide significant 
information about supraglacial sulfur springs and 
potential associated biological activity, i.e. signs of life 
beneath the ice.  The site is considered an analog to 
Europa where ruddy dark surface markings (Figure 1) 
are thought to contain sulfur-rich materials [11] that 
may reflect the chemistry of a subsurface ocean, and 
possibly of organic materials carried upward [12].  

Figure 1.  Ruddy regions on Europa as imaged by 
the Galileo spacecraft (from [12]). 
 
Jupiter's moon Europa is an extremely high priority for 
spacecraft exploration because its probable subsurface 
ocean represents a possible habitat for microbial life. A 
variety of Europa mission studies have been conducted 
[13, 14, 15] and it remains a leading candidate for 
NASA’s next Outer Planets flagship mission.   

The spring system at Borup Fiord could potentially 
be analogous to Europa in a number of ways. The 
sulfur-rich chemistry of the supraglacial deposits may 
parallel that of Europa’s ruddy spots. The glacial 
hydrology of the system operating at Borup may offer 
insights to the “plumbing” system at Europa.  Borup’s 
microbiological environment could lend insights to 
possible microbiologic niches at Europa [12]. Thus, 
study of the Borup Fiord Pass site could be critical in 



the search for indicators of life beneath the ice of 
Europa.   

Understanding how the complex system at Borup 
Fiord operates requires investigation of the geological, 
hydrological, geochemical, and microbiological 
properties of the site.  One of the methods to conduct 
these investigations is through remote sensing.  
Remote sensing can provide details on the location and 
identification of the precipitates present on the ice in 
addition to aiding in mapping the regional geology and 
studying the temporal coverage of surface spring 
activity.  Hyperspectral imagery from the Hyperion 
instrument onboard the EO-1 spacecraft provides high-
resolution spectral data in narrow swaths along the 
area of interest. Hyperion and ASTER [16] coverage 
can be linked to spectral field observations and 
geochemical measurements that serve as ground truth.  
 
3. Autonomous Sciencecraft 
 

The Autonomous Sciencecraft (ASE) is a JPL-led, 
NASA New Millennium Program mission containing 
new technology in the form of software which has 
been flying on the Earth Observer-1 (EO-1) satellite 
since the fall of 2003 [1]. This new technology 
facilitates autonomous science-driven capabilities. 
Among the ASE flight software is a set of onboard 
science algorithms designed for autonomous data 
processing, to identify observed science events [1, 2]. 
Using the output from these algorithms, ASE has the 
ability to autonomously modify the EO-1 observation 
plan, retargeting itself for a more in-depth observation 
of a scientific event in progress with current response 
times on the order of hours.  Several onboard science 
algorithms are associated with ASE for detecting 
dynamic events.  Events detected include volcanic 
activity [17], floods [18] and cryosphere events [3].  In 
this work, we have expanded the detected features to 
include the presence of sulfur on an ice background. 

 
3.1 Spacecraft and Instrument 

EO-1, managed by NASA’s Goddard Space Flight 
Center and also part of the same New Millennium 
Program, is designed to validate new technologies for 
remote sensing.    It was launched from Vandenberg 
Air Force Base on 21 November 2000 and placed in a 
sun-synchronous orbit with an altitude of 705 km and a 
10:01 AM descending node. The EO-1 payload is 
comprised of three instruments: Hyperion, Advanced 
Land Imager (ALI) and the Linear Etalon Imaging 
Spectral Array (LEISA) Atmospheric Corrector.   ASE 
analyzes data from the Hyperion instrument onboard 
the spacecraft.   

The Hyperion instrument [19] consists of two 
imaging spectrometers, covering the visible/near 
infrared (VNIR) and short-wave infrared (SWIR), 
respectively, which share a common telescope, 
producing hyperspectral images with a 30 m/pixel 
spatial resolution and 10 nm/band spectral resolution.   
Hyperion images are 7.5 km in width, with an along 
track length that depends on the duration of the data 
collect, but typically 60 km (8 seconds) or 90 km (12 
seconds).  Due to onboard memory and data transfer 
limitations, we analyze a 7.5 km by 15 km subset of 
the captured image when detecting sulfur signatures. 
The VNIR spectrometer has 50 calibrated bands, 
ranging from 0.43 to 0.93 μm, and the SWIR 
spectrometer has 148 calibrated bands, ranging from 
0.91 to 2.4 μm.  Onboard constraints permit access to 
only 12 of the bands of the Hyperion instrument, 
although these 12 are selectable from the full 
complement. 

There are two identical processors onboard the EO-
1 spacecraft, one for the primary spacecraft operations 
and the other for the payload. ASE uses the payload 
processor.  It is a Mongoose V CPU with a processor 
speed of 8 MIPS and 256 MB of RAM.  With this 
hardware constraint, the Hyperion data cannot be fully 
processed from Level 0 (raw) data to Level 1 
(calibrated) data [20].  Instead the data are partially 
processed to an onboard product designated Level 0.5, 
using data from a dark calibration image collected 
within a few minutes of the actual image. 

Features of Level 1 data processing [20] not 
performed in the onboard processing include smear 
and echo correction to the SWIR bands, as well as 
interpolation between pre- and post- dark calibration 
images before dark image subtraction.   While both 
Level 0.5 and Level 1 data are identical in VNIR, they 
diverge in SWIR, where the lack of smear and echo 
correction in Level 0.5 gives higher values than in the 
fully processed data.  Because Level 0.5 data are not 
fully calibrated, the radiance and reflectance values for 
SWIR bands calculated onboard the spacecraft can be 
considered as pseudo-radiance and pseudo-reflectance. 
 
4. Detector Implementation 
 

The sulfur detectors in this effort were developed 
using supervised learning methods.  Supervised 
classification employs a priori knowledge of a site and 
the identity of surface cover materials of interest in a 
training image or image set.  Training areas are used to 
develop or train a classification algorithm to recognize 
land cover classes based on their spectral signatures. In 
this instance, a labeled training data set was provided 



by a domain expert who had first-hand knowledge of 
the site.  A small set of pixels in a scene of the target 
location was manually labeled as ice, land, or sulfur by 
the domain expert.  Linear Support Vector Machine 
(SVM) classifiers [21, 22] were then trained using this 
data.  Since there are limited examples of the presence 
of sulfur and few scenes available, the training set was 
necessarily limited. Further, as the sparse sulfur pixels 
had to be located manually, it is possible that there 
could be (rare) unlabeled pixels that do truly contain 
sulfur.   The objective of such a classifier is to 
correctly identify the class of new pixels, where in this 
case the focus is on sulfur present or not.  The design 
goal was to correctly classify all labeled pixels with 
highest consideration given to not missing any labeled 
sulfur pixels.  A secondary consideration was to 
minimize false alarms, where unlabeled pixels were all 
considered negative (no sulfur).   

In this discussion, we focus our attention on the 
selection of which bands to use in the classifier.  The 
Hyperion instrument has 242 spectral bands, however 
due to limited processing power only 12 bands can be 
accessed onboard.  The selection of which 12 bands to 
use represented a key design decision.   Identifying the 
optimal 12 bands is   a non-trivial, NP-hard ‘242-
choose-12’ subset selection problem with over six 
million trillion possible combinations.  With this many 
possibilities, an exhaustive search would require over 
100 million years of computation.  This being 
infeasible, we considered three practical approaches to 
selecting bands.  The first is the traditional manual 
selection by a domain expert.  We also looked at two 
automated feature selection methods: recursive feature 
elimination (RFE) and Greedy Sparse Linear 
Discriminant Analysis (GSLDA). 
 
4.1. Domain Expert   

The foundational approach to selecting which 
bands or features to use was to employ the domain 
knowledge of an expert.  The expert was skilled in 
spectroscopy as well as possessing an extensive 
knowledge of the field site and the target sulfur 
signatures.  Based on experience with the site, the full 
spectra of candidate pixels were manually inspected 
along with representative spectra of non-target 
material.  By studying the spectral features, key bands 
that could best be used to discriminate the signatures 
of interest from what is considered the background 
were identified.   

 
4.2. Recursive Feature Elimination (RFE)  

The goal of Recursive Feature Elimination (RFE) 
[23] is to identify a small subset of highly 

discriminative features.  The RFE algorithm begins 
with the full set of features and recursively removes 
the feature with the minimum variation in a cost 
function.   The key to the algorithm is the insight that 
the weights multiplying the inputs of a given classifier 
can be used as feature ranking coefficients. Inputs that 
are weighted by the largest value have the greatest 
influence on the classification decision. Therefore, if 
the classifier performs well, those inputs with the 
largest weights correspond to the most informative 
features. The algorithm proceeds by training a 
classifier using the current available set of features.  
The feature with the smallest weight is then removed 
and a classifier is then trained on the reduced set of 
features. This process is repeated until the desired 
subset is achieved, in our case 12 features.  Note that, 
although a classifier is trained at each step of 
algorithm, the method is relatively efficient in 
addressing the combinatorial problem of identifying 
the best subset of features by greedily eliminating 
features. 
   
4.3. Greedy Sparse LDA (GSLDA)  

Greedy Sparse LDA (GSLDA) [24, 25] is a state-
of-the-art feature selection technique that uses a bi-
directional (forward/backward) greedy search 
algorithm to find feature subsets which jointly 
maximize the Fisher linear discriminant class-
separability criterion for a binary classification 
problem. It formulates and solves this NP-hard 
combinatorial optimization problem as a sparse 
generalized eigenvalue decomposition. It does so by 
first estimating two covariance matrices from the raw 
data: the between-class scatter and the within-class 
scatter matrices. It then maximizes the corresponding 
Generalized Rayleigh Quotient (or principal 
eigenvalue) with a sparse generalized eigenvector 
whose cardinality matches the number of features 
desired. 
 
5. Experimental Results 
 
5.1. Band Selection Discussion 

The bands identified by the three feature selection 
approaches are shown in Table 1.  Inspection of the 
table shows a significant overlap in the actual bands 
selected.  In particular, seven bands (bolded) were 
selected by all three methods.  Interesting to note is 
that the two automated methods each selected two 
higher wavelength bands while the expert did not 
choose any in this wavelength region.    



Table 1.  Band Selection Results. 

We compared the performance of 
classifiers trained using each of these three 
subsets.  As mentioned earlier, the set of 
labeled data is extremely limited.  There were 
a total of 151 pixels labeled, of which 18 were 
sulfur and the remainder non-sulfur.  Each of 
the three classifiers correctly classified 150 of 
the 151 pixels (99.34% correct).  All three 
misclassified the same non-sulfur pixel.  We 
also evaluated the full image containing 
primarily unlabeled pixels.  Results are shown 
in Table 2. 

 
 Table 2.  Classification of unlabeled pixels. 

 Finally, we mention the time to perform the band 
selection.  Manual identification required an expert 
with years of spectral data analysis and extensive field 
experience to take several days to inspect the data and 
select the key bands.  The RFE method took around 10 
seconds to compute (Python) while the GSLDA took 
1.23 seconds (Matlab). RFE computes an ordered 
ranking of features from least to most significant and 

the GSLDA algorithm identified subsets of all sizes 
(not just 12 bands).  Thus, both of the automated 
methods implicitly compute subsets of sizes other than 
twelve, should more or fewer bands be available.  Both 
of the automated methods do, however require labeled 
data for training.   
 
5.2. Onboard Experiments 

Classifiers based on the domain expert selected 
bands and the RFE selection method have been 

Expert RFE GSLD
A 

 

Band Band Band Wavelength 
(λ, nm) 

8 8 8 426.8 
9 9 9 437.0 
10 10 10 447.2 
11 11 11 457.3 
12   467.5 
14   487.9 
16   508.2 
18   528.6 
 19  538.7 
20 20 20 548.9 
 21 21 559.1 
22 22 22 569.3 
 23 23 579.5 
24 24 24 589.6 
  26 610.0 
28   630.3 
 189  2042.5 
  193 2082.7 
  194 2092.8 
 219  2345.1 

Classification Manual RFE GSLDA 
Sulfur 460 660 880 

    Non-sulfur 869533 869333 869113 
Potential false 
alarms 

0.053%  0.076% 0.10% 

  

   

Figure 2.  Results from onboard classifiers.  For 
the classification images, black is land, cyan is 
water, white is sulfur, and magenta is unclassified. 
(a) Classifier using expert-selected bands.  Image 
collected 7/24/2007.  (b) Classifier using RFE-
selected bands.  Image collected 8/5/2007. (c) Close-
in view of areas shown in red, which represent the 
field experiment site with known sulfur.  As can be 
observed, the sulfur deposits were identified in both 
cases.

(a) (b) 

(c)  



uploaded and run onboard the EO-1 spacecraft.  Initial 
results from these two classifiers run while there was 
still daylight at the site are displayed in Figure 2 which 
show the correct detection of sulfur at the known field 
site.  The total number of pixels identified as sulfur for 
each experiment is shown in Table 3. The number of 
actual sulfur pixels is thought to be in the range of 20, 
thus there is approximately a 0.2% false alarm rate.  
These results are significant in demonstrating not only 
the feasibility of identifying the signatures of interest 
in the hyperspectral data, but the practicality and 
effectiveness of performing the analysis onboard a 
spacecraft in the restricted environment available.   
 
Table 3.  Onboard classifier results.  Note that these 
results are for two different images. 

 
5.3. Data Analysis 

In this section, we show a more extensive 
comparison between the expert-band SVM and the 
RFE-band SVM.  Figure 3 shows the number of pixels 
classified as sulfur in a set of 12 images for two 
different classifiers.  Ten of the images are from 2007 
while two are from the summer of 2006.  Manual 
indicates the classifier was trained and run using data 
from the bands manually selected by an expert, while 
RFE indicates the classifier was trained and run using 
the bands selected automatically via the RFE 
algorithm.  For these images, the manual-based 
classifier typically identifies more pixels as sulfur.   
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Figure 3.  Comparison of number of pixels 

classified as sulfur on a set of 12 Hyperion images. 
 
 

Table 4.  Confusion matrix for classification of 
set of twelve test images given in percentage of total 
pixels.  Rows indicate the class assigned by the 
manual-band based classifier while columns indicate 
the class assigned by the RFE-band based classifier. 
  RFE 
  Land Ice  Sulfur 

Land 22.56 3.53 0.04 
Ice  0.07 73.62 0 

 
Manual 

Sulfur 0.01 0.09 0.06 
 

Table 4 provides more insight into the consistency 
of pixel classification of the two classifiers.  As the 
table shows, there is considerable agreement, although 
the RFE-based classifier deemed a number of pixels 
ice that the manual-band based classifier selected as 
land.  Finally, for this section, we show the 
progression of the coverage over the course of the 
2007 summer in Figure 4.  A small subimage, 
corresponding to the subregion shown in Figure 2 has 
been focused on as it is the location of the known 
sulfur deposits. 
 

6. Conclusions 
 

A broad objective of this study is to demonstrate 
the potential for future missions to capture short-lived 
science events, make decisions onboard, and identify 
high priority data for downlink.  The current results 
show considerable promise and we are expanding our 
effort in several avenues.  First, we would like to 
conduct more extensive onboard and ground-based 
tests with a more comprehensive label set.  Second, we 
would like to compare the band selection methods to 
several baseline approaches.  Third, while the false 
alarm rate is relatively low, we would like to have it 
even lower, which could be accomplish through post-
processing after initial classification. We also are 
looking to demonstrate the effectiveness of the 
methods on a broader range of applications including 
detection of change.  Ultimately, such capability can 
help maximize the science return of bandwidth-limited 
downlink channels, addressing a significant constraint 
in all deep-space missions. 
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Classification Manual RFE 
Sulfur 605 507 

    Non-sulfur 261539 261637 
Percent identified as sulfur 0.23%  0.19% 



Date Sub-Image Manual RFE 
2007.05.15  

   
2007.06.10  

   
2007.07.01  

   
2007.07.11  

   
2007.07.24  

   
2007.08.05  

   
2007.08.12  

   
2007.08.15  

   
2007.08.24  

   
2007.09.11  

   
Figure 4.  Progression of surface coverage from May through September 2007. 

For the classification images, green is land, cyan is water, and yellow is sulfur.
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