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Abstract 
 
The Onboard Autonomous Science Investigation System (OASIS) system has been developed to 
enable a rover to identify and react to serendipitous science opportunities.  Using the FIDO rover 
in the Mars Yard at JPL, we have successfully demonstrated a fully autonomous opportunistic 
science system. The closed loop system tests included the rover acquiring image data, finding 
rocks in the image, analyzing rock properties and identifying rocks that merit further 
investigation.  When the system on the rover alerts the rover to take additional measurements of 
interesting rocks, the planning and scheduling component determines if there are enough 
resources to meet this additional science data request.  The rover is then instructed to either turn 
toward the rock, or to actually move closer to the rock to take an additional, close-up, image. 
Prototype dust devil and cloud detection algorithms were delivered to an infusion task which 
refined the algorithms specifically for Mars Exploration Rovers (MER). These algorithms have 
been integrated into the MER flight software and were recently uploaded to the rovers on Mars. 
 
 
1  Introduction 
 
The Mars Pathfinder and Mars Exploration Rover (MER) missions have demonstrated that 
mobile rovers are a viable and extremely useful option for exploring the surface of other planets. 
The MER rovers have traveled across kilometers of terrain and gathered extensive scientific data, 
uncovering profound new insights into Mars' current and past environment, the history of its 
rocks, and the various roles and abundances of water.  As a result of past successes, future 
missions are being planned that will send additional robotic explorers to Mars as well as to the 
moon and outer planets. 
 
Surface rovers offer scientists the ability to move around a planetary surface and explore 
different areas of interest. The farther the rover can travel, the greater the opportunity exists for 
increased scientific discovery.  Most mobile robot efforts at JPL and NASA have concentrated 
on navigation, manipulation, and control.  For the Mars Exploration Rovers (MER) mission, 
process automation has already proven valuable in engineering areas. For example, the rovers 
can drive autonomously using GESTALT (Maimone, et al., 2006), a stereo-based hazard 
avoidance program that steers the rover away from rocks and steep hills. It can also keep track of 
its position using on-board visual odometry during some drives, which is more robust to slippage 
than wheel odometry (Cheng, et al., 2005). Due to advances in rover navigation, traverse ranges 
are increasing at a rate much faster than communications bandwidth. While the Sojourner rover 
traveled around 100m in the entire mission, the drive record for the most distance covered in a 
single sol (Martian day) is over 220 meters set by the MER Opportunity rover. As this trend in 
increased mobility continues, the quantity of data that can be returned to Earth per meter 
traversed is reduced. Thus, much of the terrain the rover observes on a long traverse may never 
be observed or examined by scientists.  We present a system developed to maximize the quality 
of the science data transmitted to Earth through the use of onboard science. This system expands 
onboard automation beyond the engineering domain to the science domain.    
 
The Onboard Autonomous Science Investigation System (OASIS) system has been developed to 
evaluate, and autonomously act upon, science data gathered by in-situ spacecraft such as 
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planetary landers and rovers (Castano, et al., 2003; Castano, et al., 2004; Castano, et al., 2005; 
Castano, R., et al., 2006). OASIS analyzes the geologic data gathered by the rover onboard. This 
analysis is used to identify terrain features of interest and additional science gathering 
opportunities. A planning and scheduling component of the system enables the rover to take 
advantage of the identified science opportunity by updating the command sequence to include 
the opportunistic measurements. OASIS currently works in a closed loop fashion with onboard 
control software (e.g., navigation and vision) and has the ability to autonomously perform the 
following sequence of steps: analyze gray scale images to find rocks, extract the properties of the 
rocks, identify rocks of interest, retask the rover to take additional imagery of the identified 
target and then allow the rover to continue on its original mission. We have conducted a number 
of tests of the combined system and individual components.  We describe results for the system 
in detecting and reacting to a science alert (identified science opportunity). 
 
Several systems and components have been developed and demonstrated for autonomous rover 
science operations. Wagner, et al (2001) and Pedersen (2001) describe a system that was 
successful at autonomously identifying meteorites in Antarctica. Gulick, et al. (2001) described 
techniques for analyzing field test data for the Marsrokhod rover. Gilmore, et al., (2000) also 
presented several methods developed specifically for autonomous rover science.  More recently, 
there has been development of methods for autonomous science including classification of 
features and survey in association with the automated identification of life in the Atacama dessert 
(Smith, et al., 2005, Thompson, et al., 2005a, Thompson, et al., 2005b). 
 
In this paper, we first discuss several motivating scenarios for onboard science and the OASIS 
system. We then explain the components of OASIS and the system itself after which we describe 
experimental testing with the system and assess the results.  Finally, we address future work.   
 
 
2 Overview of the OASIS system 
 
The OASIS system (Fig. 1) consists of an analysis capability for identification and prioritization 
of data and a planning and scheduling component to enable response to unanticipated 
opportunities.  The analysis capability includes feature extraction as well as prioritization. 

• Feature Detection: Enables extraction of features of interest from collected images of the 
surrounding terrain. This module both locates rocks in the images and extracts rock 
properties (features) including shape, texture and albedo.  It also includes atmospheric 
analysis.  

• Data Analysis and Prioritization: Analyzes the extracted features to assess the scientific 
value of the data and to generate new science goals.  

• Planning and scheduling:  Enables dynamic modification of the current rover command 
sequence (or plan) to accommodate new science requests from the data analysis and 
prioritization module.  A continuous planning approach is used to iteratively adjust the 
plan as new goals arise.  Opportunistic goals may be added to the plan as long as resource 
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and other operational constraints are still met and all higher priority goals can be 
achieved. 

2.1 Feature Detection  

In this work, we will describe our methods for the analysis of scientific data acquired by a rover.  
Our techniques are applicable to a wide range of data modalities; however our initial focus is on 
image analysis as images are commonly available and provide significant information about a 
scene.   
 
The first step in image evaluation is the extraction of features of interest from the scene depicted.  
Features may be extracted from the original image or from a region after segmentation.  
Currently within OASIS there are two image segmentation modules and three feature extraction 
modules.  Each of these modules applies general data analysis principals to identify and 
characterize image features that are representative of distinct scientific phenomena.    
 

2.1.1 Image Segmentation 
 
 
 

Figure 1.  This diagram shows an overview of the OASIS system and shows how data flows
between different system components. 
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Sky detector 
 
Both to constrain geologic analysis to the ground and atmospheric analysis to the sky, it is 
beneficial to be able to distinguish the sky from the ground, i.e. to identify the horizon.  Our 
approach to sky detection is based on region growing and is composed of four steps (Fig. 2). 
First, we assess whether sky is present in the image or not.  If so, seeds, areas of low variance, 
are identified.  The lower bound of the sky is delineated by performing edge detection on the 
variance image.  The seeds are then grown down to the variance edge.  Finally, gaps in the sky 
region are filled.  During this process we determine the skyline (the pixels at the interface of sky 
and ground) and the horizon (the image row below which there are no sky pixels).   This 
algorithm had approximately a 90% accuracy in testing on 301 MER Opportunity rover images 
(errors were evenly distributed between false positives and misses). 

 

Rock detector  
 
Detecting rocks in images is a valuable capability for autonomous planetary science. Rocks are 
excellent targets for compositional analysis with spectrometers. Their shape, size, and texture 
hold a wealth of geologic information. Computing the locations and distributions of rocks 
facilitates autonomous rover functions like adaptive target selection (Castano, R., et al., 2006), 
selective image return (Castano, R., et al., 2003), and autonomous site characterization 
(Thompson, et al., 2005a).  
 
Research in the past decade has produced a variety of strategies for detecting rocks. These 
include stereo based techniques for finding rocks based on their protrusion from the ground 
plane, edge-based methods that find closed contours, template-based methods that look for 
characteristic pixel patterns and methods that detect rocks using their shadows. Each approach 
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Figure 2.  Flow diagram for sky detection algorithm. 
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has advantages for different conditions and mission requirements. For a formal comparison of 
the performance of these algorithms see Thompson and Castano (2007).   
 
From the many sensor modalities expected to be available on a rover, the rock detection 
algorithm initially used by the OASIS system is based on analysis of intensity of single grayscale 
images. The use of stereo is highly desirable for detection of large rocks but is unsuitable for 
detection of smaller rocks; further, it cannot be applied to images that do not come in stereo 
pairs, as is the case for the MER microscopic imager (MI). In contrast, rock detection on single 
grayscale images applies directly to analysis of low resolution hazard camera (hazcam), high 
resolution navigation camera (navcam), any spectral band (or combination) of the Panoramic 
camera (Pancam) and the MI camera. The detection of rocks is carried out by finding closed 
shapes in the image. The image is initially normalized, filtered with an edge preserving smoother 
(Tomasi and Manduchi, 1998) and its edges are enhanced using unmask sharpening. The edges 
of the resulting image are detected using both a Sobel and a Canny edge detectors (Trucco and 
Verri, 1998). For each result, we search for closed shapes (which presumably correspond to 
relatively small homogeneous regions) using an edgewalker. The results from both detectors are 
combined and output as a list of contours of the identified shapes.  A flow diagram is shown in 
Fig. 3.  In testing on a set of 65 MER Spirit Pancam images, 92% of the regions identified as 
rocks correctly were rocks.  In a direct comparison to several other methods using MER Navcam 
images, this algorithm was at 90% while other rock identification algorithms were predominantly 
in the 65-75% range.  Testing with the FIDO field test rover in the JPL Mars Yard has yielded 
similar results.  While having a very low false alarm rate, making it useful for automated target 
selection (see Section 3.3), it has a high miss rate (one of the lowest recall rates) and is best not 
used for estimating rock abundances. 
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Figure 3.  Flow diagram for rock finder algorithm. 
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2.1.2 Feature Extraction 

Cloud detector 
 
Clouds are an atmospheric phenomena observed by the MER rovers on Mars. In detecting clouds, 
it is assumed that large variations in the intensity of the sky in the image correspond to clouds.  
Our approach to automating the detection of clouds is to first locate the sky (equivalently, the 
horizon) in an image and then determine if there are high variance regions in the sky (Fig. 4).  
This algorithm, which operates on individual images (Fig. 5), achieved over 93% accuracy in 
testing on 210 hand-labeled images taken by the Mars Exploration Rover Opportunity.  There 
were three misses (false negatives) and eleven false positives.  All of the three misses were 
labeled as a possible cloud (low confidence) by the scientist performing the labeling.  No high 
confidence clouds were missed.  For more details on the algorithms and experimental testing see 
Castano, A., et al. (2006) and Castano, A., et al. (2007).    Both the cloud detector and the dust 
devil detector described in the next section were uploaded on to the Mars Exploration Rovers.  
Preliminary experiments with the algorithms onboard have been successful. 

  
Figure 4. Flow diagram for cloud detection algorithm. 
 

 

Figure 5.  An example of cloud detection.  Left image is the original image and the right image is the result of the 
cloud detection algorithm. 
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A second type of dynamic atmospheric phenomena of interest on Mars is dust devils.  The two 
most common methods for detecting dust devils are the comparison of two or more spectral 
bands of the scene and the motion detection using a temporal sequence.  We selected the latter as 
it has application to grayscale as well as color imagery.  In theory, detecting rapid motion in the 
scene is not equal to detecting dust devils.  In practice, changes in a sequence of images taken 
over a short time period time at a scene on Mars are from dust devils. Dust devils are high dust 
opacity features on a dusty background and often have a faint signature in an image (Fig. 6).  The 
main challenge is to detect these often subtle features in the presence of significant image noise.   
The algorithm (Fig. 7) consists of a preprocessing step to reduce image noise followed by an 
image averaging.  The difference between the average image and the input or test image is then 
computed.  Noise effects are removed from the difference image and blob detection is performed 
on the remaining differences.  A buffered bounding box is formed around each detection to 
ensure the full dust devil is captured.  The dust devil algorithm was tested on 385 images, 
divided into 25 image sequences, acquired by the MER Spirit rover.  The sequence lengths 
varied between 6 and 20 images.  The algorithm achieved an 85% accuracy rate when the 
average image was determined using sets of four contiguous images.  For more details on the 
algorithms and experimental testing, including results with different window sizes for the 
average image (i.e. different number of images used to form the average image), see Castano, A., 
et al. (2006) and Castano, A., et al. (2007). 

 
 
Figure 6.   (Top) Result of motion detection in an image.  Two of the dust devils are observable (3rd and 5th box), 
while the other three occur later in the sequence.  (Bottom) Contrast adjusted image highlighting dust devils in scene. 
(enhanced image source: http://www.lpl.arizona.edu/~lemmon/mer_dd.html) 
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Figure 7.  Flow diagram for dust devil detection algorithm. 

Rock properties  
 
The primary focus of OASIS feature extraction and system testing has been on geological 
features, specifically rock properties, rather than atmospheric phenomena. In terrestrial studies, 
the physical properties of rocks and soils are analyzed for information regarding their geologic 
history. Physical properties such as rock/grain size, shape, composition, sorting, and texture are 
common features of rocks and soils that can be used to infer their origin and transportation 
history. Using image data, the properties that OASIS currently estimates are albedo, texture, size, 
and shape. 
 
The albedo of a rock is an indicator of the reflectance properties of a surface. OASIS measures 
albedo by computing the average gray-scale value of the pixels that comprise the image of the 
rock. The reflectance properties of a rock provide information about its mineralogical 
composition. Shadows and sun angle can both affect the gray-scale value of a pixel. Although 
this can be corrected by using the range data along with knowledge of both the sun angle and the 
camera orientation, the current system does not address these specific issues. 

OASIS uses Gabor filters to estimate the visual texture of observed rocks (Castano, et al., 1999).  
Visual texture can provide valuable clues to both the mineral composition and geological history 
of a rock as well as soil (Mahmood, et al., 1974). 
 
One of the important properties of rocks on the surface is their size.  Size can be used to identify 
sorting and geologic contacts.  We model rocks as ellipses (if no range data is provided) or 
ellipsoids (if range data is available).   
 
Inherent shape is another important and geologically informative feature of rocks. Although the 
shape of a rock is complex and often difficult to describe, significant geologic information can be 
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extracted to better understand provenance (source of material) and environmental conditions. 
Various shape parameters are used to classify rocks in terrestrial studies (Wadell, 1932), 
including elongation (or aspect ratio), ruggedness (or angularity), and surface area.  In OASIS, 
an ellipse is fit to the outline of the rock (Halir and Flusser, 1998).  The eccentricity of the fit 
ellipse as well as the error is computed (Fox, et al., 2002).  In addition, the angularity of each 
rock is assessed using a measure of ruggedness (Hentschel and Page, 2002). 
 

Boundary detection 
 
A rover on a planetary surface, such as Mars, represents a modern version of a field geologist on 
Earth. One of the most important tasks for a geologist is to develop an understanding (spatial and 
temporal) of the field area. For most mapping projects, this involves going into the field area, 
identifying what types of rocks are present, identifying key landforms and landscapes, mapping 
geological contacts or boundaries, developing a geologic map, and creating a model based on 
historical interpretations and the dynamic processes that have shaped the landscape.   
 
In the field, rocks exposed at the surface are the only record of the surface history; their physical 
appearance and location testify to their environmental settings in which they formed.  Therefore, 
to gain an understanding of the basic geologic history of a region, one must be able to identify 
where the rocks on the surface originated from. To do this, one must identify and map geological 
contacts/boundaries in the field.  The identification and mapping of geological boundaries can 
range from simplistic boundary detection such as hills, plains, and river channels, to complex 
identification of different rock and clast types, to erosional and depositional histories of the 
landscape.  For the field geologists, detail examination of units provides the data for mapping; 
for the rover, it is the critical hardware interface in conjunction with the scientist back on Earth 
that collects the data. For future long-range rovers on a planetary surface, it is critical for the 
rover onboard software to be capable of identifying simple boundaries transitions during long 
traverses. 
 

2.2 Data Analysis/Prioritization 

After extraction of features, the information is used to effect a change either in the downlink data 
queue or in the rover activities.  In this section, we describe four methods used to asses the 
priority of the data and the information it contains.   The first method is used for clouds and dust 
devils while the remaining methods are currently used with rocks in OASIS.   

Detected Event 

The first type of reaction is to set a flag when an event of interest is detected.  In the case of dust 
devils and clouds, the detection of an event in an image is used to flag that image or image 
sequence for downlink.  Cloud detection images without clouds need not take up downlink 
bandwidth.  Similarly, dust devil image sequences that do not contain dust devils do not need to 
be transmitted to Earth.  Other potential reactions include collecting an image sequence of the 
cloud or collecting additional types of data when a dust devil is detected.     
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Key Target Signature  

The second technique recognizes pre-specified target signatures that have been identified by the 
science team as data of high interest. This prioritization method enables scientists to efficiently 
and easily stipulate the value and importance to assign to each feature.  In OASIS, this method is 
used to prioritize rocks as a function of the distance of their extracted feature vector from the 
specified weighted feature vector.  Scientists are given two ways to set the target signatures that 
will determine how the rocks are ranked.  In the first method, the scientist can directly set the 
importance of specific feature values.  For example, the scientist may chose to prioritize rocks 
based on two aspects of their shape, such as eccentricity and ellipse fit. The second manner in 
which scientists can specify a target signature is by selecting a rock with interesting properties 
from the set of already identified rocks.  Rocks that resemble this particular rock in the selected 
properties are given a high priority.   While we have emphasized rocks, one could envision using 
this method with other features, including identification of clouds or dust devils with particular 
properties. 

Novelty Detection  

The third technique, novelty detection, identifies unusual signatures that do not conform to the 
statistical norm for the region.  We have developed three methods for detecting and prioritizing 
novel signatures, representing the three dominant flavors of machine learning approaches to 
novelty detection:  

• distance-based,  
• probability-based (i.e. "generative"), 
• and discriminative.   

 

The first novelty detection method is a distance-based k-means clustering approach.  Again, we 
have applied this to rock data.  Initially, all available rock data is clustered into a specified 
number (k) of classes.  The novelty of any rock is then the distance of the rock feature vector to 
the nearest center of any of the k clusters.  The greater the rock’s distance is to the nearest center, 
the higher the novelty ranking assigned to the rock.   

The second technique is a probability-based Gaussian mixture model, which attempts to model 
the probability density over the feature space. In this approach, the novelty of a rock is inversely 
proportional to the resulting probability of that rock being generated by the model learned on 
previous rock data. 

The final method is a discrimination-based kernel one-class classifier approach.  Here we treat 
all previous rock data as the "positive class" and learn the discriminant boundary that encloses all 
that data in the feature space.  We essentially consider the previous rock data as a cloud scatter in 
some D-dimensional space, where D is the number of features. The algorithm learns the 
boundary of that cloud, so that future rock data that falls farther outside the cloud boundary is 
considered more novel.  
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Representative Sampling 

The last prioritization algorithm, known as representative sampling, prioritizes data for downlink 
by ensuring that representative rocks of the traversed region are returned.  One of the objectives 
for rover traverse science is to gain an understanding of the region being traversed.  To meet this 
objective, the downlink back to Earth should include information on rocks that are typical for a 
region, and not just information on interesting and unusual rocks.  A region is likely populated 
by several types of rocks with each rock type having a different abundance.   If uniform sampling 
is employed for downlink image selection, as opposed to our autonomous onboard selection 
process, the downlinked set will be biased towards the dominant class of rock present.  This 
situation may result in smaller classes not being represented at all in the downlinked data.    

To provide an understanding of the typical characteristics of a region, rocks are first clustered 
into groups with similar properties.  The data is then prioritized to ensure that representative 
rocks from each class are sampled.  The rocks are clustered into groups based on the features 
extracted from the image data for each rock. To determine the classes, the property values are 
concatenated together to form a feature vector, and a weight is assigned to the importance of 
each property.  Different weight assignments can be used as a function of the particular 
properties that are of interest.  For example, albedo and texture are typically used to distinguish 
types of rocks, but rock size may be used if sorting is of interest.  Unsupervised clustering is then 
used to separate the feature vectors into similar classes.  We currently employ k-means due to its 
relatively low computational requirements, although any unsupervised method could be used.  
For each class of rocks, we find the most representative rock in the class, i.e., the single rock in 
any image that is closest to the mean of the set.  We give a high priority to the image containing 
this rock.  The optimal number of classes can be determined using cross-validation techniques 
(Smyth, 1996).  

 

2.3 Planning and execution  

When the data analysis software identifies science targets of interest (e.g., a novel rock), a 
science alert is generated. This results in a new science goal being passed to the planning and 
scheduling module which determines if the new goal can be accommodated.  If it can be, the 
current rover command sequence is modified to collect new science data.    
 
The OASIS planning and execution module (Estlin, et al, 2007) is intended to run with little 
communication with ground. It accepts new science goals and then modifies the current rover 
command sequence (or plan) to try and achieve as many of the goals as possible while still 
respecting relevant state and resource constraints. This module also executes the current rover 
plan by dispatching commands to the rover’s low-level control software and monitoring relevant 
state and resource information to identify potential problems or opportunities. If problems or new 
opportunities are detected, the system is designed to handle such situations by using re-planning 
techniques to add, move, or delete plan activities. 
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2.3.1 Challenges for onboard planning and execution  
Rovers equipped with onboard planning and execution capabilities have the potential for 
increasing science return not only by dynamically handling opportunistic science events but also 
by making sequencing decisions onboard with access to current state and environment 
information. There are, however, a number of challenges in providing software to support these 
types of autonomous operations.  
 
To generate and/or modify its own command sequence for carrying out a set of science goals, the 
onboard software must reason about a rich model of science and engineering activities and the 
corresponding resource and temporal constraints. For example, the software has to predict power 
consumption of variable duration activities such as downlinks and traverses, keep track of 
available power levels, and ensure that generated plans do not exceed power limitations. Science 
activities may also have varying priorities that indicate their overall mission value. Onboard 
planning and execution software must reason about these priorities and handle new science 
opportunities in a dynamic and efficient manner.  
 
Sequence generation for rover surface missions also raises a number of interesting challenges 
regarding spatial reasoning capabilities. One of the dominating characteristics of rover operations 
is traverses to designated waypoints and science targets. This element is especially important in 
future missions that intend to explore large geographic areas. Onboard planning and execution 
software needs to coordinate with several levels of rover navigation software to generate an 
efficient and achievable rover plan. In addition, it is difficult to predict duration and resource 
usage of rover navigation operations since rovers are traveling over unknown terrain. A large 
part of a rover schedule consists of rover moving to different target locations.  If time and 
resource predictions for these moves are inaccurate, the onboard software must be able to 
continuously modify the schedule in order to accommodate the new information. 
 
Further, onboard autonomy software must robustly handle the inherent uncertainty in rover pose 
estimation. The estimation of rover position is often a constant source of error. The Sojourner 
rover produced a position error of roughly 5-10% of distance traveled and an average heading 
drift of 13 degrees per day of traverse (Mishkin, et al, 1998). The MER rovers have seen large 
variations in position error, including Opportunity experiencing a slippage of close to 100% 
when the rover was caught in a sand dune (but thought it drove 40 meters). Though visual 
odometry software has helped the MER rovers perform more accurate pose estimation than 
wheel odometry alone, it is typically only run in a limited fashion due to the additional time 
requirements.  
 

2.3.2 Planning and execution system description 
Planning and execution capabilities in OASIS are provided by an integration of the CASPER  
(Continuous Activity Scheduling, Planning, Execution and Re-planning) continuous planner and 
the TDL (Task Description Language) executive system (Estlin, et al., 2007). 
 
In our system framework, CASPER and TDL handle the following functionality: 
 

• Creating an initial plan based on an input set of goals 



14 

• Maintaining resource, temporal and other rover operability constraints 
• Executing a plan by interacting with basic and low-level rover control functionality (e.g., 

navigation, vision)  
• Monitoring plan execution to track plan activity and goal status 
• Dynamically modifying the current plan based on plan activity, state and resource 

updates 
• Performing plan optimization to reason about soft constraints and goal priorities 
• Handling dynamically identified science goals (called science alerts) that are generated 

through onboard data analysis 
 
Planning and scheduling capabilities for OASIS are provided by the CASPER continuous 
planning system (Chien, et al., 2000). Based on an input set of science goals and the rover’s 
current state, CASPER generates a sequence of activities that satisfies the goals while obeying 
relevant resource, state and temporal constraints, as well as operation (or flight) rules. 1Plans are 
produced using an iterative repair algorithm that classifies plan conflicts and resolves them 
individually by performing one or more plan modifications. CASPER also monitors current 
rover state and the execution status of plan activities. As this information is acquired, CASPER 
updates future-plan projections. Based on this new information, new conflicts and/or 
opportunities may arise, requiring the planner to re-plan in order to accommodate the unexpected 
events. An example of a plan in the CASPER GUI that was executed during a rover 
demonstration is shown in Fig. 8. 
 
The executive functionality in OASIS is performed by the TDL executive system (Simmons and 
Apfelbaum, 1998). TDL was designed to perform task-level control for a robotic system and to 
mediate between a planning system and low-level robot control software. It expands abstract 
tasks into low-level commands, executes the commands, and monitors their execution. TDL also 
provides direct support for exception handling and fine-grained synchronization of subtasks. 
TDL is implemented as an extension of C++ that simplifies the development of robot control 
programs by including explicit syntactic support for task-level control capabilities. It uses a 
construct called a task tree to describe the tree structure that is produced when tasks are broken 
down into low-level commands.  
 
Currently, OASIS has a separate planner and executive and thus this framework does share 
similarities to other three-layer architecture approaches (Gat, 1991; Bonasso, et al., 1997; Alami, 
et al., 1998). However, as compared to these approaches where planning is typically done in a 
batch fashion and takes on the order of minutes to hours, this integration uses a continuous 
planning approach, where plans are updated and repaired in a matter of seconds. This enables the 
use of planning techniques at a finer timescale for tracking the progress of plan execution, 
quickly identifying potential problems in future parts of the plan, and responding accordingly. As 
we expect minor portions of the plan to change frequently, we use a lightweight plan runner to 
dispatch activities to the executive a few seconds before the task’s scheduled start time. This 
approach differs from the more common batch approach of turning the entire plan over to the 
executive for execution. Executive techniques are then used in only reactive situations or at times 
where procedural reasoning is preferred. 
                                            
1 Definitions of plan activities, goals, resources, and states as well as the aforementioned constraints and rules are encoded in a CASPER plan 
model. 
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Another related approach directed towards rover command generation uses a contingency 
planner (CPS) to schedule rover operations where the generated plan allows both temporal 
flexibility and contains contingency branches at points where the rover activity is predicted to 
have above a certain probability of failure. (Bresina, et al., 1999). Contingent command 
sequences (or plans) are produced on the ground and only the executive, which executes the 
sequence, is onboard the rover. This approach enables planning to be performed without the 
strict processing constraints that are often present when running onboard a spacecraft. However, 
typically only a limited number of contingencies can be pre-planned due to the size and 
complexity issues. Further it may be difficult to predict probable points of plan failure, especially 
when rovers drive through unknown terrain. The OASIS system approach provides more 
flexibility to handle new situations since the planner is onboard and can respond to a much large 
number of problem (or fortuitous) situations. Further, other work has shown the feasibility of 
using an automated planner onboard a spacecraft, even when only very limited processing and 
memory are available (Chien et al., 2005). 
 
Science Alerts 

To handle opportunistic science, we enabled the OASIS planning and execution module to 
recognize and respond to science alerts, which are new science opportunities detected by 
onboard data-analysis software.  For example, if a rock is detected in navigation imagery that has 
a previously unseen shape or texture, a science alert may be generated to take additional 
measurements of that rock.  
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(time advances

left to right)

Plan 
Activities

(traverse, image)

State
Timelines

(rover position)

Resource
Timelines

(power, memory)

Time & Date
(time advances

left to right)

 
 
Figure 8: Sample rover plan displayed in planner GUI.  Plan activities are shown in upper portion of window, where 
bars represent the start and end time of each activity. State and resource timelines are shown in bottom portion of the 
screen and show the effects of the plan as time progresses.  Time is depicted as advancing from left to right. 
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Science alerts can have different levels of reaction from the planning and execution system. The 
most basic reaction is to adjust the rover plan so that the rover holds at the current position and 
the flagged data is sent back to Earth for further analysis at the next communication opportunity. 
The next level of reaction is to collect additional data at the current site before transmitting back 
to Earth. A further step is to have the rover alter its path to get closer to objects of interest before 
taking additional measurements. These operations provide new data that could not be obtained 
through analysis of the original image. Each of these levels of reaction has been demonstrated for 
the OASIS system in simulation and with rover hardware (more details area given in Section 4). 
 
How the plan is modified to accommodate the alert depends on the type of alert that is 
considered. When a science alert is received that requires holding at the current position until 
data is communicated with Earth (called a stop and call home alert), the system alters the plan to 
remove or abort any activities that are not critical and wait for the next communication 
opportunity.  If activities are currently executing, the planner requests the executive components 
of OASIS to abort them. If activities are scheduled in the future, the planner deletes them and 
resolves any inconsistencies created by these deletions.  
 
To handle a science alert that requests additional measurements (called a data sample request 
alert), the planner must generate a plan that achieves the new goals without deleting existing 
activities or causing conflicts that cannot be resolved (e.g., scheduling more activities than can 
be executive over a certain time window). Data sample requests are also assumed to have an 
assigned priority, which is representative of their scientific value. This priority is currently 
assigned by the onboard data analysis system. A simple linear priority scheme is used to reflect a 
request’s value and is chosen by the data prioritization algorithm being employed.  For example 
if the analysis algorithm is looking for rocks with a certain set of properties, then rocks with 
features that closely match the target property set will be assigned high priorities. 
 
To handle a data sample request, the planner must be able to add a new science observation and 
a new move command to correctly place the rover in position to take the observation. This 
process is done through the use of planning optimization capabilities. Because it may not be 
possible to accommodate all alerts,2 a science alert is represented as an optional planning goal 
with a particular priority. As an optional goal, its achievement is not mandatory but may improve 
the plan’s optimization score if included in the plan. Before attempting to handle a science alert, 
CASPER protects the current plan by saving a copy before optimization. If CASPER can handle 
a new science alert (e.g., by adding additional science measurements) without causing other 
negative affects, such as resource over-subscriptions or the deletion of ground-specified 
(mandatory) science goals, then the new plans optimization score is evaluated. If the new plan 
has an optimization score that is higher than the original plan, then the new plan that 
accommodates the science alert is used. For more information on how CASPER reasons about 
plan optimization please see (Rabideau, et al., 2000). CASPER also is given a time limit to 
search for a new plan that handles the science alert. If a new plan is not found under the time 
limit the previous plan is restored and the science alert remains unsatisfied. This time limit can 
be adjusted based on user preferences and available processing time.  
 

                                            
2 In system testing, a number of different situations have been evaluated including allowing the data analysis component to generate a large set of 
data sample requests that cannot all be accommodated due to plan limitations on resources and time. 
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2.3.3 CLARAty Robotic Architecture 
In order to test OASIS with rover hardware,  the planning, scheduling, and execution component 
is integrated with the Coupled Layered Architecture for Robotic Autonomy (CLARAty) (Nesnas, 
et al., 2003), which is being developed at JPL in response to the need for a robotic control 
architecture that can support future mission autonomy requirements. CLARAty is a unified and 
reusable robotic software architecture that provides a large range of basic robotic functionality 
and simplifies the integration of new technologies on different robotic platforms. Through 
CLARAty, various OASIS components have been tested with several hardware platforms 
including Rocky 7, Rocky 8 and FIDO (shown in Fig. 9). For the testing reported in this paper, 
the FIDO rover was primarily used and the OASIS rockfinder and planning and execution 
software were directly integrated with CLARAty and handled interaction with other key 
CLARAty elements that were required to run with rover hardware. Other pieces of OASIS (such 
as feature extraction) are in the process of being integrated but were not integrated for these tests. 
Through this integration, the OASIS system interacted with several technologies provided by 
CLARAty, which operate onboard the rover. These software components are locomotion, 
position estimation, navigation and stereo vision processing. 

The locomotion module coordinates a set of motors to steer and drive the rover's wheels, 
enabling the rover to move across the terrain. The FIDO rover, which was used in these tests, is a 
six wheeled vehicle with all-wheel steering and driving enabling the rover to turn in place, drive 
in straight lines, drive in arcs, and perform crab maneuvers in which the rover moves in one 
direction while facing another. 

As the rover traverses across the landscape, position estimation software attempts to estimate the 
rover's current location and orientation relative to a global and a local reference frame. Varying 
texture in the sand results in different amounts of wheel sinkage, which in turn, results in 
variance in the effective wheel radius of the rover.  In addition, the rover often encounters rocks 
of varying sizes, shapes and textures which results in wheel slippage as it drives over the rocks.  
The position estimation algorithm in the current system uses an IMU (Inertial Measuring Unit) to 
estimate rover attitude (roll, pitch and heading) and wheel odometry to estimate linear velocity.  
The IMU helps detect slippage that could not be detected with wheel odometry alone. 

Navigation software is used to guide the rover to a goal location while avoiding obstacles. 
OASIS uses the Morphin navigation system developed at CMU (Urmson, et al, 2003). As part of 
the hazard avoidance algorithm, the navigator acquires stereo images from the rover hazard 

   
Figure 9. Rocky 8 rover (left), FIDO rover (middle), Rocky 7 rover (right) 
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cameras to detect obstacles in the rover's path.  The front camera images are also passed to the 
OASIS rock detection process, running in a separate thread. 

Both the navigator and the OASIS rock detection algorithm make use of the JPL stereo vision 
package to acquire range data for the hazard camera images. The navigator uses stereo 
processing to generate a point cloud representing the terrain around the rover.  OASIS uses range 
data to identify the locations of identified rocks.  Rocks are first located in a coordinate frame 
relative to the center of the rover and then translated into the global reference frame using the 
current position estimate. 

 
3 Onboard science for maximizing mission science return 
 
Onboard science or science autonomy refers to the capability of analyzing the scientific content 
of data onboard a spacecraft and using this information to autonomously take intelligent actions.   
The capability can be used to increase the science return of a mission by ensuring that high 
science content data reaches scientists on Earth.  With the constrained computing resources, 
time, power, and downlink bandwidth on planetary rovers, onboard science can be used for 
efficient allocation of a rover’s time and bandwidth resources. The OASIS system for onboard 
science can achieve this through opportunistic science during a traverse, campaign science, end-
of-day science, and prioritization of data for downlink.   
 

3.1 Opportunistic traverse science  

One mission concept for future rover exploration is to focus the scientific investigation on 
multiple science sites that are located several rover traverse days away from each other.  This 
scenario allows for a deep and concentrated exploration of each science site, however in order to 
expeditiously drive the rover to each of the sites, scientists cannot perform detailed examinations 
of the terrain between each site.  This is where traverse science, the capability of autonomously 
studying the terrain during the long traverse, can be beneficial.  
 
OASIS can be used to identify and react to science opportunities along a traverse.  As explained 
in the previous sections, the system can identify features that scientists have specified as 
important as well as novel features (see, for example, Fig. 10) and then, if resources are available, 
autonomously take additional measurements of that feature.   
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Figure 10. Image credit NASA/JPL/Cornell, JPL archive number PIA07269.  On January 2, 2005, NASA's Mars 
Exploration Rover Opportunity found this iron meteorite on the surface of Mars – close to the heat shield that the 
spacecraft dropped on its descent to the surface.  OASIS can train the rover to look for meteorites, or other types of 
rock, using the key target signature data analysis technique. 

3.2 Campaign science 

OASIS can be used not only during a traverse, but also for campaigns to monitor for science 
events or features of interest. As previously described, prototype algorithms for dust-devil 
detection and cloud detection that were developed for OASIS have been refined for MER and 
integrated into the MER flight software.  These algorithms allow selective transmission of data 
containing the features of interest.  Ground testing indicates that a 4X increase in the number of 
images with science features can be expected through the use of these algorithms.  

3.3 Automated target selection/End-of-day science 

A third benefit of onboard science data analysis is the identification of targets both at the end of 
day and during the course of a drive.  A number of rover remote sensing instruments have a very 
narrow field-of-view and thus require selection of specific focused targets for sampling.  Such 
instruments include mini-TES (thermal emission spectrometer), LIBS (laser induced breakdown 
spectrometer), and infrared point spectrometers.  The typical scenario for selecting targets for 
these instruments is to manually identify the targets using data that has been previously 
downloaded. This means that targets can only be selected from the site for which data has 
already been downloaded the night before (thus, at the end of the day, the rover sits and waits 
until the next morning for instructions on which rocks to sample).   
 
Rather than waiting until the next day, some samples could be collected by ‘blindly’ targeting the 
instrument after a traverse day. However, by analyzing image data onboard, targets for these 
instruments can be identified automatically.  As part of the OASIS system, we have implemented 
a method for automatically selecting rock targets for sampling at the end of a traverse. This could 
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be used, for example, on the Mars Science Laboratory (MSL) to select targets for the ChemCam 
instrument (which includes a LIBS) to sample.   
 

 
 
Figure 11. OASIS selects five potential targets for the ChemCam instrument to sample.  Autonomously selecting 
targets vs. blind sampling should greatly increase the chances of accurately targeting a rock.  
 
The approach is to first identify the rocks in the scene using the rock finder in the feature 
extraction component.  Points on these identified rocks are then selected for targeting (Fig. 11).     

3.4 Onboard prioritization of data 

Finally, one of the primary motivations for the development of OASIS was to prioritize data for 
downlink.  In this application, OASIS analyzes data the rover gathers, and then prioritizes the 
data based on criteria set by the science team.  Three prioritization methods have been 
developed:  

• Representative sampling (this method ensures that at least one image of every rock type 
encountered that sol is returned to Earth),  

• Key target signature (the rover looks for science-specified rock types and gives images 
with those rocks a high priority for downlink), and 

• Novelty detection (if the rover sees a rock type that it has not seen before, it assigns that 
rock’s image a high downlink priority). 
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At the next opportunity for transmitting data back to Earth, the data is already prioritized – 
ensuring that the most valuable data is sent first.   
 
 
4 OASIS system testing  
 
To evaluate our system we have performed a series of tests over several years both in simulation 
and using rover hardware in the JPL Mars Yard. These tests covered a wide range of scenarios 
that included the handling of multiple, prioritized science targets, limited time and resources, 
opportunistic science events, resource usage uncertainty causing under or over-subscriptions of 
power and memory, large variations in traverse time, and unexpected obstacles blocking the 
rover’s path.   
 
Our testing scenarios typically consisted of a number of science targets specified at certain 
locations. A map was used that would represent a sample mission-site location where data would 
be gathered using multiple instruments at a number of locations. Figure 12 shows a sample 
scenario that was run as part of these tests.  This particular map is of the JPL Mars Yard. The 
pre-specified science targets represented targets that would be communicated by scientists on 
Earth.  These targets were typically prioritized and for many scenarios constraints on time, power 
or memory would limit the number of science targets that could be handled. A large focus of 
these tests was to improve system robustness and flexibility in a realistic environment. Towards 
that goal we used a variety of target locations and consistently selected new science targets 
and/or new science target combinations 
that had not been previously tested. 
 
Another primary scenario element was 
dynamically identifying and handling 
opportunistic science events.  For these 
tests, we have concentrated on a particular 
type of event, which was finding rocks 
with distinct features. Specifically, we 
have tested the feature detection of rocks 
with certain albedo levels and shape 
features. These settings were an example 
of using the data analysis algorithm for 
target signature, where a particular terrain 
signature is identified as having a high 
interest level.  If rocks were identified in 
hazard camera imagery that had a certain 
interest score, then a science alert was 
created and sent to the planner. Science 
alerts would typically come in during 
rover traverses to new locations, but it was 
also possible for them to come in while the 
rover was at a science target location due 
to a small lag caused by image processing 

 
 
Figure 12. Sample plan shown in the Grid 
Visualization Tool (GriViT). Green lines show 
the planned path of the rover.  Blue lines shown 
the real path, and pink lines show the path that is 
currently executing.    
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time. If a science alert was detected the 
planner attempted to modify the plan so 
an additional image of the rock of interest 
was acquired. A sample image that was 
taken in response to a science alert is 
shown in Figure 13. 

4.1 Testing in Simulation 

Since testing with rover hardware can be 
an expensive and time-intensive process, 
we ran a large number of tests for the 
planning and execution module in 
simulation using a relatively simple 
simulator. This simulator could execute 
rover sequence commands and simulate 
their effects at a coarse level of 
granularity. For instance the simulator 
handled items such as rover position 
changes and energy usage over straight-line movements, but did not simulate obstacle avoidance 
or rover kinematics. Another capability that was used in simulation was triggering science alerts 
at pre-set or random times. This capability helped in evaluating the software’s capacity to 
correctly handle different opportunistic science scenarios.   
 
To easily run and evaluate large numbers of tests, we also invested in a testing infrastructure, 
which allowed tests to be run offline and automatically gathered statistics, including items such 
as number of plan conflicts found and resolved, plan generation and re-planning time, number of 
goals satisfied, overall plan traverse distance and plan optimization scores. This testing 
infrastructure also enabled the automatic creation of mpeg movies that showed plan changes 
using snapshots of a plan visualization tool. This tool showed the results of plan generation and 
execution on an overhead map of the world, and could be used for both simulated and hardware 
testing. An example plan snapshot displayed by this tool is shown in Figure 12. Planning and 
execution results were evaluated by examining gathered statistics and by viewing created mpegs 
to flag incorrect or non-optimal behavior.  

 
 
Figure 13. Sample image that was taken in response to a 
science alert indicating identification of a rock with white 
albedo on the JPL FIDO rover. 
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4.2 Testing with Rover Hardware 

In additional to testing in simulation, a large number of tests with all OASIS software modules 
were run in the JPL Mars Yard (shown in Figure 14) using different rover hardware platforms.  
For the past year and for the final demonstration, the FIDO rover (shown in Figure 9) was used 
for the majority of tests. System setup and the specific rover control software used for 
capabilities such as navigation and vision was described in Section 2.3.3. 
 
Tests in the Mars Yard typically consisted of 20-50 meter runs over a 100 square meter area with 
many obstacles that cause deviations in the rover’s path.  Most rocks in the Mars Yard are dark 
in color, thus for our albedo testing we brought in a number of whiter rocks to trigger science 
alerts during rover traverses.  Science measurements using rover hardware were always images, 
since other instruments were not readily available (such as a spectrometer). However different 
types of measurements were included when testing in simulation.  

4.3 Lessons learned 

Integrating and testing with hardware and required control software (e.g., for navigation) 
introduced a number of challenges. In this section, we will briefly outline a few of the key 
lessons learned during this process. One primary challenge was that the testing and 
demonstration of our onboard science system required a number of underlying components to 
properly perform and support our software. An important lesson for running testing with rover 
hardware is that a significant amount of time must be allocated to tune and test supporting 
software and hardware components. Though the majority of supporting components were 
provided through CLARAty, many had not been run through extensive testing in the 
environment that we wished to demonstrate OASIS. Some key components that we spent a large 
amount of time testing for our use include the FIDO rover cameras, navigation software and 
position estimation software. This process was further complicated when supporting software 
had large numbers of tunable parameters. And since some supporting software had only been 

 
Figure 14. The JPL Mars Yard with terrain of various difficulties. 
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tested in certain environments or exercised in unit testing, our testing process also uncovered 
several problems (or bugs) in supporting software that had not been previously discovered. In the 
future, we hope to have more access to the people who developed the supporting technology and 
have direct support in correctly tuning their application for our needs.  However, since this will 
not always be the case, we expect future work with hardware testing to consistently require time 
for tuning supporting technology. 

Another lesson learned was the value of performing a large number of tests in simulation, even 
with a relatively simple simulator. To test the ability of the planning system to handle science 
alerts under varying conditions, we invested in a testing infrastructure that allowed large 
numbers of tests to be run offline using a simple simulator. This simulator tracked items such as 
resource usage and rover position, but did not simulate higher fidelity items such as obstacle 
avoidance or stereo image processing. During these tests certain factors were varied such as the 
number of science alerts, available resources, rover speed, etc. This allowed the planning and 
execution software to be exercised on a large variety of situations and allowed many bugs to be 
caught before hardware testing was even performed. Furthermore, problematic situations that 
were discovered in hardware testing could often be easily reproduced and debugged by using a 
simulator. Simulated testing also provided an easy way to run large numbers of tests that would 
have been impossible to run exclusively on hardware, due to the time required to complete them. 
Overall, our testing in simulation made our system significantly more robust to variations in 
resource usage, rover position, activity execution time, and frequency of science alerts. Such 
robustness is particularly important when handling rover operations since factors such as traverse 
time, power usage and even possible science opportunities are difficult to predict.  We should 
note that although testing using a simple simulator was very valuable, it would have also be 
valuable to perform some testing with higher fidelity simulation. For instance, when testing with 
rover hardware, obstacle avoidance software often performed differently depending on variations 
in rover position, sun angle, etc.  Since we could not easily re-produce this behavior in our 
simple simulator, we had to rely on our hardware tests to ensure this behavior did not cause 
problems or unexpected situations for the OASIS software. 

Furthermore, running with hardware often allowed a perspective that was difficult to attain 
through simulated testing. For example, the accuracy of rover turns towards new science 
opportunities was much easier to judge when running with hardware. 
 
 
5 Testing Results 
 
Here we report results from a set of 10 runs with the FIDO rover that were conducted on four 
different (non-consecutive) days.  The runs had an average of 13 images.  The criteria specified 
was based on albedo – identify rocks that were white.  An example is shown in Figure 13. The 
goal was to detect targets if they are within approximately 3m of the forward field of view of the 
rover as it proceeds along the traverse. Each run had between one and seven targets that the rover 
encountered within the goal detection range. Over the 10 traverse test runs, this consisted of 40 
total target rocks. 36 of these targets were detected (85% detection rate). There were no false 
alarms during any of the ten runs.   
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The 85% detection rate indicates how many of the targets were identified at some time over the 
course of the traverse.  A target may be imaged multiple times during the traverse as the rover 
approaches and drives by the rock. Over the 10 runs, there were 82 instances of targets appearing 
in an image within the detection range. Individual targets were imaged between 1 and 6 times.  
Of the six targets that were missed, three of these appeared in a single image and three appeared 
in two images. No target that appeared in more than two images was missed. 
 

OASIS component run times on FIDO  

As part of our testing, we gathered preliminary statistics on the run time of key OASIS 
components.  While we have not spent significant time optimizing the performance of these 
components, the numbers provide a general idea of current performance and provide a reference 
to track future improvements. In a representative run, the OASIS rockfinder processed 11 
hazcam images resulting in 5 science alerts being sent to the planner. The rockfinder was run on 
a 233 Mhz Pentium processor running VxWorks 5.5 with 128 MB of RAM. Rockfinder took an 
average of 53 seconds to process each image and found about 9 rocks per image with a total of 
103 rocks being identified for the 11 images. The OASIS feature extraction component was run 
on a 930 Mhz Pentium processor running Linux 2.4 with 256 MB of RAM. For these tests, 
albedo and shape information were extracted for each rock.  For the 11 images processed, feature 
extraction averaged 0.5 seconds per image. The planning and scheduling component ran on a 2.5 
GHz Pentium processor running Linux 2.4 with 1 GB of RAM.  In handling the 5 science alerts, 
the planner spent an average of 6 seconds generating a plan for each alert. 

 
6 Conclusions and Future work 
 
We have demonstrated an autonomous science system in the field conducting opportunistic 
science.  By integrating data analysis and planning capabilities, the resulting system can operate 
in a closed-loop fashion. This framework enables new science targets to be addressed onboard 
with little or no communication with Earth. An important contribution of this work is closing the 
loop between the sensor data collection, science goal selection, and activity planning and 
scheduling. Current approaches require human analysis to determine goals and to manually 
convert the set of high-level science goals into low-level rover command sequences. By 
integrating these components onboard, we enable a rover to function autonomously, as if a 
scientist were always in communication. This type of capability should dramatically increase the 
science return of future rover missions. 

In the future we will expand the features that the system can recognize.  We also would like to 
incorporate information from other sources such as from orbital data in assessing the surface 
features such as boundaries.  Currently, the system does not explicitly recognize the same target 
or feature from different viewpoints. This is an aspect of information that could be accumulated 
onboard.  For example, observations of a feature as the rover approaches it could be used to 
update the information on the interest level of the feature. Similarly, when a feature is viewed 
from a different angle, this would be valuable information.  In addition, information from 
different instruments could be incorporated into the onboard analysis to identify regions and 
individual features of high science interest.   
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The Deep Space Network will remain a constraining resource for future deep space missions as 
the number of high bandwidth missions increases.  Traditional data compression can provide a 
valuable mechanism for increasing the amount of useful data returned; however, a limited 
amount of compression is possible before distortion levels become intolerably high.  Science 
return can be maximized by returning the data with the highest science content possible.  The use 
of onboard analysis to identify opportunities and select the data with the highest scientific 
interest will be a critical functionality to maximize science return on future deep space missions 
with high data volume instruments. 
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