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NASA’s Earth Observing One Spacecraft (EO-1) has been adapted to host an advanced 
suite of onboard autonomy software designed to dramatically improve the quality and 
timeliness of science-data returned from remote-sensing missions. The Autonomous 
Sciencecraft Experiment (ASE) enables the spacecraft to autonomously detect and respond 
to dynamic scientifically interesting events observed from EO-1’s low earth orbit. ASE 
includes software systems that perform science data analysis, mission planning, and run-
time robust execution. In this article we describe the autonomy flight software, as well as 
innovative solutions to the challenges presented by autonomy, reliability, and limited 
computing resources. 

I.� Introduction 
he Autonomous Sciencecraft Experiment (ASE), an autonomous software agent currently flying onboard the 
Earth Observing One (EO-1) spacecraft, demonstrates several integrated autonomy technologies that together 

enable science-directed autonomous operations. Using onboard data-processing, mission-planning, and robust 
execution, ASE commands the EO-1 spacecraft to react to the science-value of collected observations. A suite of 
data-processing “science” algorithms analyze incoming observations looking for dynamic science events, including 
volcanic eruptions, flooding, ice breakup, and cloud cover change. An onboard decision-making agent modifies the 
spacecraft observation plan to capture follow-on observations of high-value science events, or to delete observations 
with little scientific value. A robust goal and task oriented execution system executes mission plans, making 
adjustments to compensate for run-time anomalies and uncertainties. Together these technologies maximize science 
return through autonomous goal-directed exploration and data acquisition. This article describes the effort to 
develop and deploy ASE on EO-1.  
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The ASE onboard flight software includes several autonomy software components:  
1) Onboard science algorithms that analyze the image data to detect trigger conditions such as science 

events, “interesting” features, changes relative to previous observations, and cloud detection for 
onboard image masking 

2) Robust execution management software using the Spacecraft Command Language (SCL) [Interface & 
Control] package to enable event-driven processing and low-level autonomy 

3) The Continuous Activity Scheduling Planning Execution and Replanning (CASPER)4 software that 
replans activities, including downlink, based on science observations in the previous orbit cycles 

The onboard science algorithms analyze the images to extract static features and detect changes relative to 
previous observations. This software can identify regions of interest including land, ice, snow, water, and thermally 
hot areas. Repeat imagery using these algorithms can detect regions of change (such as flooding and ice melt) as 
well as regions of activity (such as lava flows). Using these algorithms onboard enables retargeting and search, e.g., 
retargeting the instrument on a subsequent orbit cycle to identify and capture the full extent of a flood. On future 
interplanetary space missions, onboard science analysis will enable capture of short-lived science phenomena. These 
can be captured at the finest time-scales without overwhelming onboard memory or downlink capacities by varying 
the data collection rate on the fly. Examples include: eruption of volcanoes on Io, formation of jets on comets, and 
phase transitions in ring systems. Generation of derived science products (e.g., boundary descriptions, catalogs) and 
change-based triggering will also reduce data volumes to a manageable level for extended duration missions that 
study long-term phenomena such as atmospheric changes at Jupiter and flexing and cracking of the ice crust and 
resurfacing on Europa.  

The onboard planner (CASPER) generates mission operations plans from goals provided by the onboard science 
analysis module. The model-based planning algorithms enable rapid response to a wide range of operations 
scenarios based on a deep model of spacecraft constraints, including faster recovery from spacecraft anomalies.  The 
onboard planner accepts as inputs the science and engineering goals and ensures high-level goal-oriented behavior. 

The robust execution system (SCL) accepts the CASPER-derived plan as an input and expands the plan into low-
level commands. SCL monitors the execution of the plan and has the flexibility and knowledge to perform event-
driven commanding to enable local improvements in execution as well as local responses to anomalies.  

A typical ASE scenario involves monitoring of active volcano regions such as Mt. Etna in Italy. (See Fig. 1.) 
Hyperion data have been used in ground-based analysis to study this phenomenon. The ASE concept is applied as 
follows: 

1) Initially, ASE has a list of science targets to monitor that have been sent as high-level goals from the 
ground. 

2) As part of normal operations, CASPER generates a plan to monitor the targets on this list by 
periodically imaging them with the Hyperion instrument. For volcanic studies, the infrared and near 
infrared bands are used. 

3) During execution of this plan, the EO-1 spacecraft images Mt. Etna with the Hyperion instrument. 
4) The onboard science algorithms analyze the image and detect a fresh lava flow, or active vent. If new 

activity is detected, a science goal is generated to continue monitoring the volcanic site. If no activity is 
observed, the image is not downlinked.  

5) Assuming a new goal is generated, CASPER plans to acquire a further image of the ongoing volcanic 
activity. 

6) The SCL software executes the CASPER generated plan to re-image the site.  
7) This cycle is then repeated on subsequent observations.  

The basic software architecture used by ASE on EO-1 has been previously described,3,18 thus here we 
concentrate on the overall system – how the components work together to achieve the closed loop science response 
as well as how the software was modified to deal with the unique challenges of flight on EO-1 (most of which apply 
to other space missions). 

Building autonomy software for space missions has a number of challenges, including the following:  
1) Limited, intermittent communications to the agent.  A typical spacecraft in low earth orbit (such as EO-

1) has 8 x 10-minute communications opportunities per day. This means that the spacecraft must be 
able to operate for long periods of time without supervision. For deep space missions the spacecraft 
may be in communications far less frequently. Some deep space missions only contact the spacecraft 
once per week, or even once every several weeks. 

2) Spacecraft are very complex. A typical spacecraft has thousands of components, each of which must be 
carefully engineered to survive rigors of space (extreme temperature, radiation, physical stresses). Add 
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to this the fact that many components are one-of-a-kind and thus have behaviors that are hard to 
characterize. 

3) Limited observability. Because processing telemetry is expensive, onboard storage is limited, and 
downlink bandwidth is limited, engineering telemetry is limited. Thus onboard software must be able to 
make decisions on limited information and ground operations teams must be able to operate the 
spacecraft with even more limited information. 

4) Limited computing power. Because of limited power onboard, spacecraft computing resources are 
usually very constrained. A typical spacecraft CPU offers 25 MIPS and 128 MB RAM – far less than a 
typical personal computer. Our CPU allocation for the Autonomous Science agent on EO-1 is 4 MIPS 
and 128MB RAM. 

5) High stakes. A typical space mission costs hundreds of millions of dollars, any failure has significant 
economic impact. The total EO-1 Mission cost is over $100 million dollars. Over financial cost, many 
launch and/or mission opportunities are limited by planetary geometries. In these cases, if a space 
mission is lost it may be years before another similar mission can be launched. Additionally, a space 
mission can take years to plan, construct the spacecraft, and reach their targets. This delay can be 
catastrophic.  

In the remainder of this paper we first provide background information: 
1) describing the basic characteristics of the EO-1 mission and spacecraft; and 
2) reviewing the basic ASE on EO-1 software architecture. 

We then provide information on how our software dealt with three key aspects of software agents for spacecraft. 
1) We describe how our onboard planning software can generate mission plans despite the limited EO-1 

CPU processor (our allocation is about 4 MIPS) 
2) We describe how the ASE telemetry was designed to provide sufficient information to track the ASE 

software performance within very limited bandwidth 
3) We describe our layered, redundant agent and how it enables additional agent safety – critical to the 

operations of mission with costs over $100 Million dollars. 
 

 
Fig. 1 Autonomous science scenario 
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II. The EO-1 Mission 
The Earth Observing-1 (EO-1) satellite is the first mission in NASA's New Millennium Program Earth 

Observing series.8 Designed as a testbed for the next-generation of advanced land imaging instruments, EO-1 was 
launched on a Delta 7320 from Vandenberg Air Force Base on November 21, 2000 into a 705 km circular sun-
synchronous orbit at a 98.7 degree inclination. This orbit follows a 16-day repeat track, with at least 5 day and 5 
night over-flights per 16-day cycle separated by less than a 10-degree change in viewing angle. 

EO-1 carries three instruments: the Advanced Land Imager (ALI), the hyper-spectral Hyperion Imager, and the 
Atmospheric Corrector (AC). The ALI combines novel wide-angle optics with a highly integrated multispectral and 
panchromatic spectrometer to demonstrate spatial and spectral resolution comparable or improved from Landsat at 
substantial mass, volume, and cost savings. The Hyperion is a high-resolution imager capable of resolving 220 
spectral bands (from 0.4 to 2.5 µm) with a 30-meter spatial resolution. The instrument typically images a 7.5 km by 
42 km land area per image and provides detailed spectral mapping across all 220 channels with high radiometric 
accuracy (ASE uses the products from the Hyperion instrument for onboard science processing). Finally the EO-1 
AC provides the first space-based test of an Atmospheric Corrector (AC) - designed to compensate for atmospheric 
absorption and scattering, allowing for increased accuracy of surface reflectance estimates. Together the three 
instruments collect over 20-Gbits of science data to the onboard solid-state data recorder for each observation. 

The EO-1 spacecraft has two Mongoose M5 processors. The first M5 is used for the EO-1 command and data 
handling functions. The second M5 is part of the WARP (Wideband Advanced Recorder Processor), a large mass 
storage device. Each M5 runs at 12 MHz (for ~8 MIPS) and has 256 MB RAM. Both M5’s run the VxWorks 
operating system. The ASE software operates on the secondary WARP M5 processor. This provides an added level 
of safety for the spacecraft since the ASE software does not run on the main spacecraft processor.  

Following a one-year primary mission, EO-1 entered extended mission in January of 2002 having surpassed all 
original technology validation goals. To date, EO-1 has collected over 5,000 successful science observations, far 
beyond the original success criteria of 1,000 observations. 

III.� Autonomy Software Architecture 
The autonomy software on EO-1 follows a traditional three-layer architecture (See Fig. 2) consisting of planner, 

executive, and skills layers. At the highest level of abstraction, the Continuous Activity Scheduling Planning 
Execution and Replanning (CASPER) software manages mission planning functions. CASPER schedules science 
activities while enforcing spacecraft operations and resource constraints. The duration of the planning process is on 
the order of tens of minutes. Activities scheduled by CASPER are passed as inputs to the Spacecraft Command 
Language (SCL) executive system, which generates the corresponding detailed command sequences. SCL operates 
on the several second timescale. Below SCL the EO-1 flight software represents the “skills” layer - responsible for 
lower level control of the spacecraft including a full layer of independent fault protection. The interface from SCL to 
the EO-1 flight software is at the same level as ground generated command sequences.  

The science analysis software is scheduled by CASPER and executed by SCL in batch mode. The results from 
the science analysis software result in new observation requests presented to the CASPER system for integration in 
the mission plan. 

This layered architecture was chosen for two principal reasons: 
1) The layered architecture enables separation of responses based on timescale and most appropriate 

representation. The flight software level must implement control loops and fault protection and respond 
very rapidly and is thus directly coded in C. SCL must respond (in seconds) quickly and perform many 
procedural actions. Hence SCL uses as its core representation scripts, rules, and database records. 
CASPER must reason about longer term operations, state, and resource constraints. Because of its time 
latency, it can afford to use a mostly declarative artificial intelligence planner/scheduler representation. 

2) The layered architecture enables redundant implementation of critical functions – most notably 
spacecraft safety constraint checking. In the design of our spacecraft agent model, we implemented 
spacecraft safety constraints in all levels where feasible. 

It is worth noting that our agent architecture is designed to scale to multiple agents with agents communicating at 
either the planner level (via goals) or the execution level (to coordinate execution). 
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Fig. 2  Autonomy software architecture. 

IV.� Onboard Science Analysis 
The first step in the autonomous science decision cycle is detection of interesting science events. In ASE a 

number of science analysis technologies are being flown including: 
1) Thermal anomaly detection – uses infrared spectra peaks to detect lava flows and other volcanic 

activity.  
2) Cloud detection9 – uses intensities at six different spectra and thresholds to identify likely clouds in 

scenes.  
3) Flood scene classification – uses ratios at several spectra to identify signatures of water inundation as 

well as vegetation changes caused by flooding.  
4) Change detection – uses multiple spectra to identify regions changed from one image to another. This 

technique is applicable to many science phenomena including lava flows, flooding, freezing and 
thawing and is used in conjunction with cloud detection. 

5) Generalized Feature detection – uses trainable recognizers to detect spatial features as sand dunes and 
wind streaks. 

All of these science algorithms use the Hyperion instrument as the ALI data is not available for processing 
onboard. In addition, the onboard science algorithms had to work within several flight constraints (see Fig.  3): 

1) Onboard data was only partially calibrated data (gain correction only) 
2) Limited onboard processing capabilities restricts access to only 12 of the 220+ bands (any 12 bands 

may be selected) 
3) Limited onboard processing capabilities necessitate the use of algorithms with low computational 

requirements per pixel 
The utilization of onboard processing to select data for downlink and trigger future imagery is shown below.  

1) The EO-1 spacecraft images a target and collects the full (220 band) instrument data over a 7.7km 
(across track) by 50+km (along track) swath. This data is stored directly on the solid-state recorder 
(SSR) onboard. 

2) Onboard a portion of this data is read back into RAM (7.7km x 30km approx.) and 12 bands.  
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3) Onboard science algorithms run to detect the process of interest, producing a score based on the type of 
detector being run. 

4) These science detection scores are used to: prioritize data for downlink; summarize or delete data; 
and/or to retask the spacecraft for subsequent observations of same or related phenomena. 

5) If science images are deemed of interest, the full data from the observation (e.g. all bands and full 
swath) is available for downlink. However, in some cases greatly summarized data can be downlinked, 
optimizing the use of scarce downlink resources. For example, if volcanic activity is detected, it is 
typically 5-30 pixels of a 256x1024 image. By downlinking only key spectra and actual volcanic pixels 
(with their locations) we can achieve 3-4 orders of magnitude in data reduction. 

 

 
Fig. 3  Onboard science processing. 

The Arizona State University developed Snow-Water-Ice-Land (SWIL) algorithm is used to detect lake 
freeze/thaw cycles and seasonal sea ice. The SWIL algorithm uses six spectral bands for analysis. The classified 
pixels in the images are then used to drive a science event trigger. For example, in the images in Fig. 4, the ratio of 
ice to ice and water pixels (e.g., ice/(ice + water) ) is used to detect the freezing and thawing of Round Lake in 
Minnesota. Figure 5 shows the use of the SWIl classifier to track sea ice breakup in polar regions. 

Figure 6 shows both the visible and the infrared bands of the same image of the Mt. Etna volcano in Italy. The 
infrared bands are used to detect hot areas that might represent fresh lava flows within the image. In this picture, 
these hot spots are circled with red dotted lines.  

The University of Arizona developed flood scene classification algorithm uses multiple spectral bands to 
differentiate between land and water. The results of the algorithm include are compared with land and water counts 
from a baseline image to determine if flooding has occurred (or is receding). If significant flooding has been 
detected, the image can be downlinked. In addition, a new goal can be sent to the CASPER planning software to 
image adjacent regions on subsequent orbits to determine the extent of the flooding. Figure 7 shows ASE data used 
to track a rare monsoonal flooding event in the Diamantina river basin in Australia. 

The above examples utilize “expert-derived” classifiers. These are classifiers developed by ASE science team 
members by manual inspection of Hyperion images. While this process was effective, it required considerable effort 
by the science team. More recently, elements of the ASE team have applied machine learning techniques to the 
Hyperion image classification problem (Ref. 22 in preparation). First, a brute force band ratio search algorithm was 
applied to determine the best bands and thresholds for a simple single band ratio classification technique. Second, 
more sophisticated Support Vector Machine20,21 learning techniques have been applied.  

As seen in Fig. 8, the automated ratio method achieved results comparable to the human expert derived 
classifier. The SVM methods achieved results comparable or better than the human expert derived classifier. 

Later flights will validate as many science analysis algorithms as resources allow. These flights will begin by 
validating change detection on multiple science phenomena, spatial feature detection on Aeolian (wind) features 
such as sand dunes, sand shapes, and wind streaks, and the Discovery algorithm.1 Validating this portfolio of science 
algorithms will represent a valuable step forward to enabling future autonomous science missions.5,6 
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Fig. 4  Detection of lake freezing for Round Lake, Minnesota by classification of ice and water and computing 
the ration of ice to ice or water pixels.  (Courtesy of NASA) 

V. �Continuous Planning 
The spacecraft planning and scheduling process is traditionally performed as one step of ground operations to 

schedule science observations and downlink opportunities. The output of this process is a detailed sequence of 
commands to be issued to the spacecraft for execution. In order for the ASE to autonomously satisfy new science 
requests from image processing algorithms, this step is done onboard by the CASPER4 planning software. CASPER 
is able to represent the operations constraints in a generic modeling language and reasons about these constraints to 
generate a detailed mission operation plan while respecting mission constraints and resources (see Fig.  9). 

CASPER uses a local search15 approach to develop the detailed operation plan. The main algorithm for planning 
and scheduling is based on a technique called iterative repair. During iterative repair, the conflicts in the plan are 
detected and resolved one a time, until no conflicts exists. A conflict is considered to be any violation of the mission 
or spacecraft constraints and resolved through several predefined methods. These methods include: moving, adding, 
removing, detailing, or abstracting a scheduled operation. The repair algorithm may use any of these methods in an 
attempt to resolve a conflict. 

Figure 11 shows an example of the repair algorithm after introducing a set of new science observations into the 
plan. 
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Fig. 5  Classification of snow, water, ice, and land used to detect sea ice formation and breakup in polar 
regions. (Courtesy of NASA) 

For example, imagine that CASPER is trying to schedule several observations: Act-1 and Act-2 shown above. 
CASPER is continuously checking constraints – properties that must hold in order for an operations plan to be valid. 
An example constraint is that the plan must always use no more power than is available at that point in time onboard 
the spacecraft. In this case, CASPER would detect a conflict – which is a way in which a constraint can be violated. 
In this case the combination of Act-1 and Act-2 uses more power than is available. CASPER notes the conflict of 
“using more power than is available” over the time interval (b).  CASPER then considers a set of repair methods – 
each repair method is a modification to the plan that may remove the conflict. One repair method for this type of 
conflict is to delete an activity using power during the conflict (e.g. either delete Act-1 or delete Act-2). CASPER 
will choose a repair method applicable to this conflict. If it chooses “delete” it may have further choices to make, 
such as which of Act-1 and Act-2 to delete. 

CASPER may have many alternative choices in dealing with a single conflict. And there may be many conflicts 
in the plan. CASPER must attack each of these individually, searching possibly many alternatives to find a 
combination that works for the complete plan. In this way CASPER develops a mission plan by composing and 
modifying the many activities in the plan. 

Below we show a mission plan generated by CASPER. At the top of the plan the black lines represent activities. 
The lines start at the beginning (in time) of the activity and the length of time indicates the duration of the activity 
(e.g. the end of the line represents the completion of the activity). The lower portion of the diagram indicates the 
states and resources tracked by CASPER. These include the spacecraft state (such as orientation, power, etc.), 
computer state (available space on the SSR, etc.), and communications availability (such as ground stations in view). 

Because onboard computing resources are scarce, CASPER must be very efficient in generating plans. While a 
typical desktop or laptop PC may have 2000-3000 MIPS performance, 5-20 MIPS is more typical onboard a 
spacecraft. In the case of EO-1, the Mongoose V CPU has approximately 8 MIPS, of which only about 4 MIPS are 
available to the ASE software. Additionally, while EO-1 has considerable RAM for a spacecraft (256MB), the 
complexity of EO-1 operations can cause this flight constraint to become critical. 
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Fig. 6  Thermal anomalies associated with volcano activity at Mt. Etna, visual spectra at left and infrared 
spectra with labeled lava flows at right. (Courtesy of NASA) 

CASPER plans within limited CPU resources by using a hierarchical, continuous4 planning paradigm. Rather 
than attempt to plan out an entire week of operations in a single batch timeslice, it utilizes a long-term, more abstract 
plan for the longest planning horizon (one week), and plans at a detailed level for the next day of operations. As time 
proceeds forward, it incrementally replans for the new observations that fall within this one-day horizon (see Fig.  
5). Consequently, CASPER CPU usage is spread more evenly than in a batch planning paradigm. 

CASPER also utilizes incremental, continuous planning to deal with onboard RAM limitations.  
1) One week of EO-1 ops includes about 100 science observations plus 50 S-Band/X-Band contacts.  
2) The science observations alone for one week of operations represent approximately 7800 activities. 
3) Represent a full week of operations at the activity/command level of detail would require approximately 

224 MB of heap space in RAM.  
4) Onboard constraints limit CASPER to 32 MB of heap space. 

In order to deal with this restriction, CASPER performs detailed planning ~6 hours in advance, which uses 
approximately 16MB Heap Space (see Fig.  12). It represents the future observations at a more abstract level and 
does not reason about all of their command interactions. CASPER also deletes past activities from its plan database 
to reclaim the memory for other uses. 

VI. � Robust Task Execution 
ASE uses the Spacecraft Command Language (SCL) [Interface & Control] to provide robust execution. SCL is a 

software package that integrates procedural programming with a real-time, forward-chaining, rule-based system. A 
publish/subscribe software bus allows the distribution of notification and request messages to integrate SCL with 
other onboard software. This design enables either loose or tight coupling between SCL and other flight software as 
appropriate.  

The SCL “smart” executive supports the command and control function. Users can define scripts in an English-
like manner. Compiled on the ground, those scripts can be dynamically loaded onboard and executed at an absolute 
or relative time. Ground-based absolute time script scheduling is equivalent to the traditional procedural approach to 
spacecraft operations based on time. In ASE scripts are planned and scheduled by the CASPER onboard planner. 
The science analysis algorithms and SCL work in a cooperative manner to generate new goals for CASPER. These 
goals are sent with a messaging system. 

Many aspects of autonomy are implemented in SCL. For example, many constraint checks redundant with fault 
protection are implemented in SCL. Before each command is sent from the autonomy software to the C&DH 
software by SCL, it undergoes a series of constraint checks to ensure that it is a valid command. Any pre-requisite 
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states required by the command are checked (such as the communications system being in the correct mode to 
accept a command). SCL also verifies that there is sufficient power so that the command does not trigger a Low Bus 
Voltage and that there is sufficient energy in the battery so as to retain safe margins. Using SCL to check these 
constraints (while included in the CASPER model) provides an additional level of safety to the autonomy FSW. 

 

 
Fig. 7  Flood detection with visual spectra at left and flood detection map at right. Time series shown of same 
target. (Courtesy of NASA) 

VII. � Telemetry Management 
On traditional ground planning systems, there are several ways of collecting data about the state and actions of 

the planner. Most systems provide a graphical user interface that allows ground personnel to immediately determine 
conflicts within the schedule, and the disk drive allows for large amounts of data to be stored for review. These are 
the methods we had used for developing and debugging issues with CASPER. 

Collecting data for spacecraft operations is done much differently. ASE has two methods of collecting data: a 
telemetry packet and log files. Telemetry is output by each subsystem at various frequencies (a packet every 1 to 8 
seconds) and provides information about the health and state of the spacecraft. The telemetry values are stored on 
the spacecraft local recorder and automatically downlinked during each ground contact. While in ground contact, the 
real-time telemetry data produced by each subsystem is immediately available to the ground operations team, but 
collected data has approximately a 24 hour turnaround time before it is available. Engineering data is the only 
method the EO-1 operations team used to collect data on the spacecraft. ASE introduced an 8MB ramdisk into the 
system as a means of collecting output log files. However, processing and viewing log files introduces extra work 
for the ground operator. In order to downlink log files from the spacecraft, operators need to specify the file to 
downlink and initiate the dump at the start of the ground contact. Also, if the file is too large, the operator may need 
to downlink the file across multiple ground stations and reconstruct it afterwards. 

To fit within the framework of normal EO-1 operations and reduce the requirements to ground operators, we 
decided that engineering data would be the main method of extracting information about the health and status of 
CASPER. Output log files are still available for downlink, in case an anomalous situation occurs that cannot be 
explained through the telemetry packet. 
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Fig. 8  Imagery and classification results of Expert labeled image, Manually derived, and two Machine 
Learned classifications – automated ratio and SVM. (Courtesy of NASA) 

There were several objectives in determining what points of data to include in the CASPER telemetry packet. 
We wanted to be able to identify an anomalous situation within the planner and replay that data to replicate what 
occurred in flight. This was achieved by partitioning the packet into three sections. 

1) Health and Status – contains a short summary of the planning software status (see Table 1). 
2) Autonomous Decisions – the decisions that the planner takes onboard. These decisions are the choices 

made in “repair iterations” to fix any problems in the plan and are shown in Table 2. 
3) Uncontrollable Inputs – all un-controlled, un-planned inputs to the planner are logged. With CASPER, 

these inputs are updates to plan variables that differ from the modeled value and are shown as Plan 
updates in Table 3. 

A maximum of 248 bytes are available in a single telemetry packet. In the latest build of the ASE software, the 
CASPER telemetry packet is utilizing 224 out of the 248 bytes available. Below, we list out a few of the data points 
for each section, and provide a brief reason for each. To maximize the packet space, each telemetry point listed 
below is either 2 or 4 bytes in size. 

The health and status section (see Table 1) of the packet allows us to determine the status of CASPER. The error 
and warning counters indicates if an unexpected situation occurred within the planning software. The stack usage 
indicates how much margin exists before overflowing the allotted stack space. The heap usage indicates if a memory 
leak is occurring. 

The repair iteration section (see Table 2) of the packet contains data about how CASPER modified the plan. It 
does not contain information on what options were available at each choice point to assist in understanding why 
decisions were made. For example, it would be useful to collect the list of all conflicts considered in the repair 



CHIEN ET AL. 

 207 

iteration, prior to CASPER’s selection. However, the number of conflicts is variable and unbounded. It would be 
impossible to store an unbounded set of data points within a finite telemetry packet, without creating an artificial 
upper bound. Instead, the conflict selected is stored to determine what schedule modifications were done. This 
strategy of selecting what was chosen is done for all choice points. The output log files contain the detailed list of 
possibilities for each choice point for a repair iteration. 

With all autonomous plan modifications logged, we are able to reproduce in our ground testbed what occurred in 
flight. However, because we are not able to store the full state of CASPER, we assume that it is possible to 
reproduce the initial conditions of the system. When loading the initial set of goals into the planner, there needs to 
be the same number of conflicts on our ground testbed as there would be in flight in order to reproduce what 
occurred. 

 

Table 1  Sample of the Health and Status Section of the CASPER Telemetry Packet 

Health & Status 
Data Point Description 
Heartbeat Up-counter to indicate 

planner is still active 
Errors Number of errors 
Warnings Number of warnings 
Current Stack Usage Current amount in use 

from allocated stack space 
Maximum Stack Usage High amount used from 

allocated stack space 
Current Heap Usage Current amount allocated 

from heap manager 
 

 

Table 2  Sample of the Repair Iteration Section of the CASPER Telemetry Packet 

Repair Iteration 
Telemetry Point Description 
Iteration counter Number of repair iterations 
Success Indicates if the last plan modification was 

successful 
Seconds Elapsed Elapsed time for the last iteration 
Pre Conflict Count Number of conflicts prior to plan modification 
Post Conflict Count Number of conflicts after plan modification 
Conflict Type Type of last conflict 
Conflict Start Time Start time of conflict  
Conflict End Time End time of conflict  
Resolution Method Method used to modify the plan 
Activity Instance ID Instance of activity modified 
Activity Schema ID Schema of activity modified 
Parameter Schema ID Activity parameter being modified 

 
The timeline update section (see Table 3) of the telemetry packet contains all un-modeled updates to the 

CASPER planner during execution. As activities are inserted into the CASPER schedule, the future values of the 
spacecraft telemetry are modeled as timelines. Each timeline is constantly monitored to ensure what CASPER 
modeled is a true reflection of the state of the spacecraft. When the model differs from the spacecraft, updates to the 
timelines are inserted into the plan. 
 A common update to the CASPER planner occurs for the number of free memory blocks in the solid-state 
recorder after executing a science observation. Due to scarce computing resources, it is not uncommon for the 
instruments to collect data several seconds longer than planned, thus consuming more memory blocks. Therefore the 
spacecraft telemetry value for the number of free memory blocks differs from the value CASPER modeled. 
CASPER then updates the timeline to the new value. 
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Several other points of data were considered but omitted from the CASPER telemetry packet due to its limited 
size and time constraints. 

1) Activity information – activity state information, start time, and unique identifiers are several of the 
parameters that could be saved in the telemetry packet. 

2) CASPER input commands – the last ground command issued to CASPER can be logged in the packet 
as verification of receipt. Currently, we are examining the consequences of the command to determine 
if it was successful received. 

3) Heuristic information – at each decision point in the repair iteration, weighted heuristics are used to 
select the correct value. Data indicating which heuristics were used would help in determining why 
decisions were made during repair. 

Code execution – within critical areas of the CASPER planning code, saving what section of the code is executing 
would help in debugging. For example, if CASPER were to enter a section a code and loop forever, we are not 
currently able to determine where the code is “stuck”. 
 

 
Fig. 9 The planner takes goals such as science and engineering requests and constructs a plan that achieves 
the goals while respecting operations constraints such as memory, power, and timing. 
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Table 3  Sample of the Schedule Update Section of the CASPER Telemetry Packet 

TimeLine Updates 
Telemetry Point Description 

Time Updated Time plan was updated 
Advanced Land Imager (ALI) 
Cover 
ALI Power State 
ALI Data Gate 
Hyperion Power State 
Hyperion Image Mode 
WARP mode 
WARP Free Blocks 
WARP Files In Use 
Downlink Rate 

The values of each 
telemetry point 
indicate how the 
schedule was updated 

 
 

 
Fig. 10 The planner resolves problems with the plan (conflicts) by classifying the conflicts and applying 
modifications to the plan appropriate for the conflict type. 

VIII. � Agent Safety Requirements 
Because of significant concerns for spacecraft health, ASE implements a layered redundant approach to 

enforcing spacecraft safety. This means that whenever possible at every level of the agent architecture, redundant 
checks are implemented to enhance spacecraft safety. Each of these safeguards has been reviewed by EO-1 
spacecraft engineers, EO-1 operations personnel, as well as ASE team members (for a more detailed description of 
the model development, validation, and testing process, see Ref. 17). In addition, automated code generation 
techniques were used to develop SCL state & resource constraint checks directly from the CASPER model. 

Table 1 below shows analysis of two spacecraft safety constraints. As shown, the operations team, the CASPER 
planner (via its model), SCL (via scripts and rules), and the EO-1 flight software (FSS) all implement constraints to 
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protect the spacecraft from damage due to faulty commands or anomalies. In this manner, even if one of the layers 
malfunctions, the spacecraft may still be protected. 

Because of the high stakes of EO-1 operations, significant effort also went into validating that the implemented 
ASE software enforced all of the designed constraints. The testing plan includes a number of cases to verify each 
constraint is enforced, as well the following general classes of test cases:  

1) Coverage test cases that attempt to exercise a representative sample of all possible parameter-value 
assignments.  

2) Stochastic test cases that verify nominal-operation scenarios.  
3) Environmental test cases that evaluate how our agent performs in an uncertain environment. 

Each build of the ASE software must be rigorously tested in a range of testbeds of increasing fidelity before 
flight (see Table 5.). The Solaris and Linux testbeds can be run at faster than real-time, however the GESPAC and 
EO-1 testbeds operate only at real-time. 

Each build of the software must pass a pre-specified number of runs in order to be accepted for the next level of 
testbed testing. This begins with unit testing on workstations and culminates with integrated system runs on the EO-
1 testbed prior to flight. These tests are quite time consuming. Typically a build requires 100 systems level tests on 
workstations. Each of these tests may represent hours to a week of operations time and several hours of CPU time. 
In order to investigate all anomalies from test runs and update software, it may take several hundred runs. Thus for 
each build the testing scheduled time is measured in weeks or months. 

 

Table 4  Safety Analysis for Two Risks 

 Instruments overheat from being left on too long Instruments exposed to sun 

Operations 
For each turn on command, look for the following 
turn off command. Verify that they are within the 

maximum separation. 

Verify orientation of spacecraft 
during periods when instrument 

covers are open. 

CASPER High-level activity decomposes into turn on and turn 
off activities that are with the maximum separation. 

Maneuvers must be planned at times 
when the covers are closed  

(otherwise, instruments are pointing 
at the earth) 

SCL Rules monitor the “on” time and issue a turn off 
command if left on too long. 

Constraints prevent maneuver scripts 
from executing if covers are open. 

FSS Fault protection software will shut down the 
instrument if left on too long. 

Fault protection will safe the 
spacecraft if covers are open and 

pointing near the sun. 

 
 

Table 5  Testbeds Available to Validate the EO-1 Agent 

Type Number Fidelity 

Solaris 

Sparc Ultra 
5 Low – can test model but not timing 

Linux 

2.5 GHz 
7 ″ 

GESPAC 

PowerPC  

100-450 MHz 

10 Moderate – runs flight OS 

EO-1 Flight Testbed 

Mongoose M5, 

12 MHz 

3  High – runs Flight Software 
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Fig. 11  An Earth Observing One mission plan involving several observations. 

IX. �Flight Status and Specific Scenario 
The ASE software has been steadily progressing to full operations with the major milestones listed below.  
 

Test Description Test Date 
Onboard cloud detection March 2003 
Onboard commanding path May 2003 
CASPER ground generated commands executed 
onboard 

July 2003 

Software jumping and loading August 2003 
ASE autonomously acquires calibration image and 
performs downlink 

October 2003 

ASE autonomously acquires science images and 
performs downlinks 

Jan-Feb 2004 - 

ASE autonomously analyzes science data onboard 
and triggers subsequent observations 

April 2004 - 

ASE achieves full mission success 14 May 2004 
100 Hour ASE operations September 2004 
End of ASE Operations  January 2005+ 

 
In May 2004, ASE achieved its full success criteria which involved multiple demonstrations of onboard 

autonomy software performing integrated science with autonomous planning and execution. This software has been 
further enhanced to enable long duration autonomy tests and we are currently (August 2004) building to longer tests 
culminating in a one week long autonomous operations demonstration in the September 2004 timeframe. 

An additional effort includes teaming with the NASA Ames Research Center to fly the Livingstone 2 Mode 
Identification and Diagnosis software16 to be added to ASE in the August 2004 timeframe. The Livingstone 2 
experiment would demonstrate tracking of multiple fault hypotheses, a capability not demonstrated in the Remote 
Agent Experiment in 1999. This effort is in earlier stages but is making good progress. 

ASE is expected to fly at least through Spring 2005, at which time numerous extended duration tests will have 
flown. 
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Fig. 12 CASPER plans incrementally, to avoid using large amounts of memory and CPU. (Courtesy of NASA) 

 
Fig. 13  Candidate Mars surface features for autonomous tracking. (Courtesy of NASA) 
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X. Contribution to Future Space Missions 
While ASE demonstrates onboard science in an Earth-orbiting mission it has direct relevance to a large class of 

deep space missions. Specifically, the technologies demonstrated by ASE’s use of onboard science processing has 
numerous applications to future Space Science Missions. For example, in Europa orbiter and lander missions, 
onboard science processing could be used to autonomously: 

1) Monitor surface change as function of changing tidal stress fields 
2) Monitor areas of greatest tidal stresses 
3) Search for surface change, that is, evidence of recent activity 
4) Search for landing sites that have a high probability of lander survivability and where the crust is thin 

enough for deployment of a sub-crust submarine explorer 
The ASE Team has identified the NASA Mars Program as an ideal candidate for technology infusion of the ASE 

software. As a result, we have been working closely with the Mars Odyssey Project to identify and ground test 
science analysis algorithms that could be used for discovery of high-value science on Mars. One goal of this work is 
to have an existing or future Mars mission infuse the ASE software into their baseline flight software.  

Many science applications for Mars have been identified. For example, onboard software could be used to 
monitor surface features on Mars such as: wind streaks, dune cape, dark slope streaks, and dust devils (see Figs. 13 
and 14). In these applications onboard software could enable efficient search for such features, tracking of change in 
these features by comparison to an onboard catalogue, and tracking of transient phenomena such as dust devils (see 
Fig.  15). 

Many science applications for other planets exist as well. Sample applications include tracking of volcanic 
activity at Io (See Fig.  16), tracking crustal change at Europa, and tracking cryo-volanism at Triton. 

 

 
Fig. 14 More candidate Mars surface features (dark slope streaks) for autonomous tracking. (Courtesy of 
NASA) 
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Fig. 15  Dust devils – another candidate for autonomous tracking. (Courtesy of NASA) 

XI. �Related Work 
In 1999, the Remote Agent experiment (RAX)13 executed for a few days onboard the NASA Deep Space One 

mission. RAX is an example of a classic three-tiered architecture,7 as is ASE. RAX demonstrated a batch onboard 
planning capability (as opposed to CASPER’s continuous planning) and RAX did not demonstrate onboard science. 
PROBA [ESA] is a European Space Agency (ESA) mission that uses onboard autonomy and was launched in 2001. 
However, ASE has more of a focus on model-based autonomy than PROBA. 

The Three Corner Sat (3CS) University Nanosat mission will be using the CASPER onboard planning software 
integrated with the SCL ground and flight execution software.2 3CS has been delayed several times because it is a 
shuttle launch and currently scheduled for launch in July 2004. The 3CS autonomy software includes onboard 
science data validation, replanning, robust execution, and multiple model-based anomaly detection. The 3CS 
mission is considerably less complex than EO-1 but still represents an important step in the integration and flight of 
onboard autonomy software. 

 

 
Fig. 16 Autonomous systems could be used to track volcanic activity on Io, the most actively volcanic body in 
our solar system. (Courtesy of NASA) 

 



CHIEN ET AL. 

 215 

More recent work from NASA Ames Research Center is focused on building the IDEA planning and execution 
architecture.12 In IDEA, the planner and execution software are combined into a “reactive planner” and operate using 
the same domain model. A single planning and execution model can simplify validation, which is a difficult problem 
for autonomous systems. For EO-1, the CASPER planner and SCL executive use separate models. While this has 
the advantage of the flexibility of both procedural and declarative representations, a single model would be easier to 
validate. We have designed the CASPER modeling language to be used by domain experts, thus not requiring 
planning experts. Our use of SCL is similar to the “plan runner” in IDEA but SCL encodes more intelligence. The 
EO-1 science analysis software is defined as one of the “controlling systems” in IDEA. In the IDEA architecture, a 
communications wrapper is used to send messages between the agents, similar to the software bus in EO-1. In the 
description of IDEA there is no information about the deployment of IDEA to any domains, so a comparison of the 
performance or capabilities is not possible at this time. In many ways IDEA represents a more AI-centric 
architecture with declarative modeling at its core and ASE represents more of an evolutionary engineered solution. 

ASE was originally scheduled for flight on the Techsat-21 mission.3 However this mission was cancelled and the 
software was adapted for flight on EO-1. The principal changes from the Techsat-21 to EO-1 are that the science 
payload was changed from a synthetic aperture radar (SAR) to a hyperspectral imaging device (Hyperion) and the 
change in the flight software Operating System from OSE to VxWorks. The instrument change required significant 
alteration to the science targets and analysis algorithms. The flight OS change required a new integration with the 
flight software. The basic software architecture and components (e.g. CASPER and SCL) have remained the same. 
It is a testament to the generality of the ASE architecture that the ASE team was able to switch carriers and re-
integrate to achieve full mission success within the original cost cap of the Autonomous Sciencecraft Experiment.  

XII. � Future Work and Conclusions 
ASE on EO-1 demonstrates an integrated autonomous mission using onboard science analysis, replanning, and 

robust execution. The ASE performs intelligent science data selection that enables a reduction in data downlink. In 
addition, the ASE increases science return through autonomous retargeting. Demonstration of these capabilities 
onboard EO-1 enables radically different missions with significant onboard decision-making leading to novel 
science opportunities. The paradigm shift toward highly autonomous spacecraft will enable future NASA missions 
to achieve significantly greater science returns with reduced risk and reduced operations cost. 
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