
Exploiting C-TÆMS Models for Policy Search

Bradley J. Clement and Steven R. Schaffer
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, M/S 126-347

Pasadena, CA 91109-8099
bclement@jpl.nasa.gov, srschaff@aig.jpl.nasa.gov

Abstract

We describe our experience developing software for finding
centralized multiagent optimal policies for problems speci-
fied in the C-TÆMS modeling language, which differs from
more classical state-based modeling languages in specifying
task relationships explicitly. This software has been used by
the DARPA Coordinators program for evaluating other real-
time, decentralized algorithms that do not guarantee optimal
solutions. The search algorithm is AO*, but we focus discus-
sion on our customization of the search for C-TÆMS, how
we addressed uncertain duration, and the resulting challenges
in trying to scale to larger problems. We will describe differ-
ent techniques for reducing the number of states created and
how they succeeded or failed.

Introduction
A common approach to planning under uncertainty is to
search for policies represented as Markov Decision Pro-
cesses (MDPs). However, scalability can be a problem since
the state space often grows more than exponentially with the
problem size. Planning for multiple agents is more complex
in that finding optimal policies can grow more than exponen-
tially with respect to the size of this already exponentially
growing state space.

In order to simplify the complexity of optimal policy
search, a common technique is to only instantiate the state
space that is reachable from a known initial state (Barto,
Bradtke, & Singh 1995; Hansen & Zilberstein 2001;
Mausam & Weld 2005; Musliner et al. 2006;
Wu & Durfee 2007). Much MDP planning research is
based on either no language in particular (just the abstract
MDP formulation) or on languages deriving from that of
STRIPS (Stanford Research Institute Problem Solver),
where state variables are used to describe and determine
legal task interactions (Fikes & Nilsson 1971). This paper
will describe some techniques specific to the C-TÆMS
modeling language (Boddy et al. 2005), based on the
TÆMS (Task Analysis, Environment Modeling, and
Simulation) framework (Decker & Lesser 1993).

The C-TÆMS modeling language is similar to a Hier-
archical Task Network (Erol, Hendler, & Nau 1994), but
instead of using state representations, C-TÆMS models
task relationships explicitly and quantitatively. The lan-
guage allows probability distributions over discrete sets of

action durations, quality outcomes, and relationship effects.
C-TÆMS also explicitly represents concurrently executing
agents.

Other recent work also discusses how to minimize policy
space exploration for C-TÆMS problems (Musliner et al.
2006; Wu & Durfee 2007). This paper addresses the prob-
lem of finding centralized optimal solutions offline, while
others describe single agent optimal algorithms used to find
decentralized solutions in real time without optimality guar-
antees. Although not searching for policies, a constraint
programming approach has been shown to optimally solve
large centralized C-TÆMS problems without uncertainty
(van Hoeve et al. 2007).

We will describe techniques that were intended to im-
prove problem solving performance by exploiting domain
knowledge captured by the C-TÆMS problem description.
Some of the techniques were useful, some were not, and
others were for certain kinds of problems. These techniques
aimed to
• reduce the number of states explored and their actions,
• cache and reuse state evaluation computations, and
• streamline the creation of individual states.
Some of these techniques only gave a small factor of im-
provement on the same problems while others enabled the
software to scale to larger problems. The tightly coupled
problems of the DARPA Coordinators program that meet
the edge of what our implementation solves involve be-
tween 6 and 14 agents, a total of 24 to 36 methods, each
with 1 to 3 duration and 1-3 quality possibilities. These
problems typically created a policy space of 1 to 4 mil-
lion states consuming 1 to 5 GB of RAM in 10 to 45
minutes. The decentralized algorithms solve much larger
problems (Musliner et al. 2006; Maheswaran et al. 2008;
Smith et al. 2007). Although these algorithms do not guar-
antee optimality, for many problem sets, they all performed
within a couple of percent of optimal. We personally have
had much trouble trying to solve these problems by hand,
needing to consult the optimal policy and still taking hours.

We implemented these strategies in a centralized planner
that the DARPA Coordinators Program has used to com-
pute optimal solutions as a benchmark to compare other
distributed planning algorithms that do not make optimal-
ity guarantees. There are other algorithms that use MDP



representations for TÆMS and C-TÆMS problems and that
have similarities to ours (Wagner, Raja, & Lesser 2006;
Musliner et al. 2006; Wu & Durfee 2007). As we de-
scribe in AO* Policy Search section, our algorithm mainly
differs from others in centralizing search, in handling con-
current action and uncertain duration, and in how it exploits
the structure of the C-TÆMS modeling language.

We will first describe how we represent C-TÆMS prob-
lems as MDPs with states. For context, we explain our use
of an AO* strategy for policy search, iteratively computing
a policy while expanding the state space. We then present
techniques that exploit domain knowledge in the problem
description and a preliminary evaluation of their effective-
ness.

MDP Representation of C-TÆMS
Instead of describing C-TÆMS in detail as is done else-
where (Boddy et al. 2005), we will describe the basic mod-
eling features and how we translate them into states of an
MDP. Some of the semantics described are vague but we
aim to describe them in sufficient detail to understand the
results in variations of the planning algorithm.

C-TÆMS modeling features
A C-TÆMS problem is a tree of activities with executable
methods as leaves. The methods are executed once by a
specified agent and have a probability distribution over la-
beled outcomes, each of which having discrete distributions
over duration and quality outcomes. Other activities are
tasks that are each composed of a group of subactivities
(tasks and/or methods).1

A task’s quality is determined by a quality accumulation
function (QAF) of the qualities of the subactivities. The
problem is to maximize the quality accumulated by the root
task. Since our algorithm is offline, our goal is to compute
the optimal policy, a complete contingency plan. For exam-
ple, a max QAF accumulates the maximum of the qualities
of the subactivities, suggests that the quality of only one will
affect the overall quality, so it may not make sense to exe-
cute more than one of them, depending on the quality dis-
tributions. C-TÆMS also defines min, sum, synchronized-
sum, sum-and, and exactly-one. Without getting into de-
tails, the last two approximate the usual AND/OR seman-
tics of hierarchical plans (Erol, Hendler, & Nau 1994), and
synchronized-sum differs from sum in returning zero quality
if not all tasks start simultaneously.

Another feature of the language is the representation of
non-local effects (NLEs), effects of one activity’s outcome
on another’s. An activity can enable or disable another when
it accumulates quality > zero. An activity A facilitates or
hinders activity B by scaling or shrinking (respectively) B’s
quality linearly with A’s quality by a factor chosen from

1A more recent version of the C-TÆMS specification includes
preconditions and postconditions for methods (like STRIPS) that
are used for specifying location state and repeatable “template”
methods that are available to a specified set of agents and used
for movement between locations. The scope of this paper does not
include these language elements.

a discrete distribution. The same two NLEs can similarly
shrink or scale (respectively) the duration of a target activ-
ity. An NLE can also specify a delay in its effect. For ex-
ample, if an NLE specifies that A disables B with a delay of
10 seconds, B can successfully execute if it starts less than 9
seconds after A first accumulates quality.

Representing MDP states and actions
An MDP commonly represents a planning problem as a
mapping of states and possible actions to possible outcome
states (with respective probability and reward/quality). We
represent state for C-TÆMS problems with the following
values.
• method state (for each method)

– phase of execution ∈ {pending, active, completed,
failed, aborted, abandoned}

– start time
– outcome
– duration
– quality

• time
From this information the accumulated quality for all of

the tasks can be computed. The different phases of a method
capture not only the basics for accurate simulation (pending,
active, and completed), but some for readability/debugging
(failed, aborted) and one implied intention (abandoned) that
we will later show can be helpful in eliminating suboptimal
action choices and avoiding repeated exploration of equiva-
lent action sequences. By including time in the definition, a
state can never be revisited after an action is taken since all
subsequent states will have a later time value. This restricts
the network formed by the state-action-state mapping to a
directed acyclic graph.

The possible actions for the agents are simply to start or
abort execution of a method. Each agent can only execute
one method at a time.

This representation is sufficient for handling uncertain
duration, as is a similar representation for a STRIPS de-
scendant (Mausam & Weld 2005). Other translations of C-
TÆMS to MDP are done from a single agent’s perspective
as part of decentralized problem solving and manage inter-
dependencies (NLEs) between agents instead of centralizing
the analysis of possible concurrent joint actions (Wagner,
Raja, & Lesser 2006; Musliner et al. 2006; Wu & Durfee
2007).

AO* Policy Search
The planning algorithm we use is based on an A* algorithm
for AND/OR graphs, AO* (Ginsberg 1987). It is a forward
expansion version of Looping AO* (Hansen & Zilberstein
2001) without looping (cycling of states during execution).
It is forward expansion in that it starts with a known ini-
tial state and only creates/expands new states that are reach-
able from already existing states through actions applicable
in those existing states. Revisiting a state during execution
(looping) does not occur because the state includes time.



Thus, the expansion of the state-action space forms a di-
rected acyclic graph, and it is unnecessary to discount qual-
ity accumulation (i.e. discount reward as for value iteration)
in order to guarantee convergence in policy evaluation and
search. The forward expansion is an exploration of possible
simulations of alternative contingency plans.

The algorithm iteratively
1. picks the most likely, best-so-far unexpanded (frontier)

state in the current policy,
2. expands just one level of the state’s joint actions and their

outcome states while computing an admissible overesti-
mate of eventual expected quality for each of the outcome
states,

3. identifies the policy action from the state as that with the
best expected quality outcomes, and

4. propagates the frontier state’s better estimate back to pre-
ceding states, recursively choosing possible new policy
actions along the way back to the initial state

until all policy actions are expanded.
Evaluating the next state to expand in step 1 is accom-

plished by a simple A* search from the initial state along
the not fully explored best actions, choosing at each step to
follow the outcome that (from the initial state) is most likely
to occur until a frontier state is found. This search, in the
worst case, explores the entire policy, which is O(oam) for
a agents, o outcomes per method, and m methods per agent
since there are O(oa) outcome branches for a chosen pol-
icy joint action at each of O(m) steps of a fully concurrent
schedule.

The idea is to expand the best guess at the policy, so that
states unique to suboptimal policies are never instantiated.
The best case is Ω(oam) when there is no backtracking in
the policy and no concurrent execution among the agents.
Trading space for computation time, the reference to the
most likely frontier state could be cached with each state
along with the likelihood, and the values could be updated
along with the policy actions in step 4, adding only a con-
stant factor slowdown to 4 and a constant factor increase in
memory. Caching the search in this way eliminates the A*
search, reducing step 1 to a constant lookup, thus providing
an exponential boost in computational speed. We have not
implemented this since we have been focused on scalability,
which has always been limited by memory.

Step 2 expands the state on the frontier picked in step 1,
and gives an admissible overestimate of the expected quality
for each of the actions’ outcome states as they are instanti-
ated. This provides a more accurate estimate of the quality
of each action, which in step 3 can lead to picking a new pol-
icy action with a now higher estimated expected quality. In
turn, the expanded state’s estimate is the same as its policy
action and so in step 4 the more accurate estimate is propa-
gated to prior states to make their estimates more precise.

Step 4 is computed by walking back from the frontier
toward the initial state along all action-outcome paths be-
tween, updating the stored quality estimate and policy action
for each visited prior state. Multiple paths occur when dif-
ferent actions (possibly from different states) lead to equiva-
lent outcome states that can be “merged” as a single instanti-

ation to save memory. The implementation of these updates
should not be done as a simple recursion:
function badUpdate( expandedState ) {
updateExpectedQualityFromOutcomes( expandedState )
for each priorState of expandedState

badUpdate( priorState )
}

This can unnecessarily induce an exponentially growing
number of updates for each earlier prior state since they can
be updated for each time one of their outcome states is up-
dated. Instead, each prior state should wait until all of its
outcome states have been updated so that it is only updated
once. Our implementation uses a priority queue of states to
be updated, reverse sorted by time.
function goodUpdate( expandedState ) {

queue.insert( expandedState )
while ( queue not empty ) {
state = queue.pop()
updateExpectedQualityFromOutcomes( state )
for each priorState of state

queue.insertAfterLaterStates( priorState )
}

}

If all outcome states are unique in the policy, step 4 only
requires updating one prior state for each step from the ini-
tial state in it’s unique schedule. For the worst case fully
concurrent policy size p = O(oam), step 4 requires a total
of mp state updates for the generation of the policy.

It turns out that for any policy, at worst, each state ex-
pansion requires on average a number of state updates equal
to the length of a schedule (policy graph) even if multiple
paths from the initial state must be updated when merged
outcome states are updated. Intuitively, if you take the worst
case policy tree with no merges and merge two states at the
same level, an update to the merged state requires updates to
the same two chains of prior states that lead to the two sep-
arate states. Even though one of the outcome trees leading
out of the merged states disappears, the number of updates
for those states do not change. Thus, in effect no remaining
state from the merge is updated any more or less than it was
before, so the merge does not affect the number of updates
for a state expansion, but only the number of states overall.

The AO* search algorithm terminates with the exact ex-
pected quality assigned to the initial state and with all policy
actions proven to have greater or equal quality than other
choices which must have occurred when all frontier states
are terminal. States are deemed terminal when there are no
remaining methods to execute. So, the algorithm keeps an
anytime policy for the states it has explored and the policy
is already computed upon completion of state generation.
The main computational overhead for keeping a policy dur-
ing expansion is really in selecting the next state to expand
(for which we discussed a remedy) and in estimating the ex-
pected quality of the policy from each state as it is created.

A similar AO* algorithm, the informed unroller (IU), is
applied to the decentralized, real-time C-TÆMS problem
from a single agent’s point of view (Musliner et al. 2006;
Wu & Durfee 2007). Instead of updating the policy after
each state expansion, IU “unrolls” the frontier of the best-
so-far policy until the size grows by some pre-specified fac-
tor, choosing most reachable states first. Then, IU updates
the policy based on estimated quality, determines the new



frontier of the policy, and repeats the unrolling. So, this ap-
proach differs most with step 1 of our algorithm. Our al-
gorithm pays a higher cost in performing the search for the
next best state to expand after each expansion because IU
sorts the policy frontier O(nlogn) for n frontier states (or n
policy states) while we potentially explore the entire policy
for each frontier state, O(n2). Our proposed remedy would
eliminate this cost and require O(logn) to update a heap for
the next best candidate state to expand. The advantage of
our approach over IU is that it will expand fewer total states
to find the optimal solution (on average) since it is careful
to only expand best-policy-so-far actions on each step rather
than correcting after some number of steps have been taken,
as IU does.

Instead of evaluating the most reachable state first, LAO*
has been implemented to perform a depth-first search to ex-
pand the policy, irrespective of the likelihood of reaching
the states, eliminating any overhead for prioritizing states.
Hansen and Zilberstein state that this equal treatment of
less likely states is an advantage for faster convergence in
a comparison with RTDP (Barto, Bradtke, & Singh 1995)
on a car racing problem (Hansen & Zilberstein 2001). In
our future work, we hope to compare the depth-first expan-
sion to the most-likely first heuristic for C-TÆMS problems.
Otherwise, our algorithm differs from LAO* only in our
customization to C-TÆMS and ignorance of looping (since
there is none when including time as part of the state).

Minimizing State Creation Time
Our first implementation typically expanded about a million
states in two minutes, exhausting 14GB of RAM, so we have
since tried to be smarter about selectively exploring actions
and states to avoid running out of memory. Here we describe
how we streamlined the generation of actions and their out-
come states that we believe greatly contributed to the speed
of the implementation.

The basic idea is simple. We make a copy of the state
being expanded and iteratively make small changes to it,
enumerating all actions and all of their outcomes. A com-
mon way to generate combinations is to enumerate them in
the same way counting is accomplished by incrementing the
digits of a number. The least significant digit is always in-
cremented through its values (0-9) and the other digits are
only incremented when the next lesser significant digit “rolls
over” from 9 back to 0. So, in order to generate the next
state, we only need to “increment” the copy.

The variables describing the state are treated like digits.
When starting to expand a state, we generate actions by
enumerating/incrementing combinations of phase changes
for starting and aborting methods. So, a “least significant
method” always iterates like a binary digit between starting
and not starting or aborting and not aborting. For each cy-
cle through the pair of phase changes, the phase of the next
incomplete method is incremented. Complete methods are
skipped since there are no action choices.

Before incrementing to the next action combination, out-
comes of the combined (joint) action are iterated as less sig-
nificant variables. So, only when all outcomes are enumer-
ated does the state “roll over” to the next joint action. So,

both the actions and their outcomes are enumerated by incre-
menting the values of following variables (digits) ordered by
decreasing significance corresponding to increasing detail:

• agent

– method
∗ phase
∗ outcome (including NLEs)
· duration
· quality

In addition to the basic state, there is other derived state
information that is preserved and reused for subsequent
states. For example, the next possible start or abort time
for a method does not need to be recomputed.

Avoiding Redundant Policy Space Exploration

Because the policy space (state-action graph) being ex-
plored grows so intractably, theoretically any method that
can soundly eliminate instantiation of an action or state
can potentially exponentially reduce the memory (and
time) used to find the policy. Thus, for scalability, obvious
suboptimal actions should be avoided. For example, never
start a method

• for an agent that is already executing another,

• before its release time,

• after it can possibly meet its deadline,

• when disabled, or

• when not enabled.

Another way to conserve memory is to expand outcomes
as a discrete event simulation instead of at every clock tick.
We do this by computing the time of each outcome state as
the minimum of possible method start times, abort times,
and completion times. A challenge in the simulation of un-
certain duration is that the probability distributions of du-
ration and quality change over time. If a method does not
terminate at one of its possible durations, then other dura-
tions become more likely, changing the relative likelihood
of outcomes, to which quality distributions are tied. To min-
imize this computation during expansion, we precompute
each method’s distributions in a 2D array indexed by the du-
ration that the method has been executing so far and the time
left before the method’s deadline.

A brute force technique for exploring the policy space
would be to consider starting any combination of actions at
every time point. However, if there are no deadlines, then
there would be an infinite number of policies to explore (e.g.,
start method A at time t=1, start A at t=2, at t=3, . . . ). Ex-
ploring this infinite space is unnecessary since the expected
quality of executing a method may not depend on when it
is executed (so just explore starting A at time=1 if all other
time points can give no better result). So the question then is
how to minimize the start times tried without compromising
optimality.



Selectively starting methods
Our basic rule of thumb to avoid redundant schedule explo-
ration is that every agent must be executing a method unless
all remaining methods are NLE targets, have not yet been
released, or can no longer meet their deadlines.2 The candi-
date times we consider for starting method are
• the release time,
• when the agent finishes executing another method,
• when it is enabled or facilitated (after the delay), and
• one time unit after it would be disable or hinder another.

For the last one, we cannot simply consider starting a task
just before it would be disabled/hindered. Using this strat-
egy, if the disabler’s only opportunities to start would end the
activity more than the NLE delay before the disabled activ-
ity’s release time, then no schedules including both activities
would ever be explored, compromising optimality.

Instead, the end of the source method must be timed to
avoid disabling/hindering the target activity. This is espe-
cially difficult given that the search is a forward expan-
sion/simulation in time, and the target’s start time will be
selected later. One option we considered was to wait until
the target method started and then go back in time and re-
pair the policy where necessary to include all options for
timing the source method. However, this would be very
complicated, especially when branches were deleted when
pre-determined to be suboptimal.

Instead, we pre-compute the candidate start times for the
source of a disable/hinder NLE as part of a temporal net-
work of method start and end times. A depth first search
generates all possible start times for the source based on all
of its possible end times, which are based on all possible
candidate start times of the NLE target, which may depend
on start/end times of other methods. The resulting network
records the chain(s) of justifications for the candidate time
that must be reflected in the expanding state before choos-
ing to start the NLE source. Note that the depth first search
can itself be intractable, indicating in many cases that so is
the overall problem.

Selectively aborting methods
The more obvious candidate abort times include the possi-
ble end times of the method. These would be the logical
times to decide to abort in order for the agent to perform
another method. The less obvious abort times are the pos-
sible completion times of other agents’ methods that may
be indirectly related. For example, suppose agents A and
B each have a choice of two methods (because of deadline
constraints), and A’s method a2 enables B’s method b2. If
b1 is aborted to start b2, then a1 may need to be aborted to
start a2 so that b2 can be enabled in time. So, a1’s abort time
is connected to b1’s abort times. Beyond NLEs we have not
determined when another agent’s possible completion time
could be reason to abort another agent’s method, so we have
to assume that any method could affect any other.

2We treat methods as inheriting NLEs, release times, and dead-
lines of their parent tasks.

Merging Equivalent States
Typically, MDP solutions only instantiate an outcome state
once, tying all equivalent outcomes to the same state and
only needing to instantiate the actions and outcomes of that
state once. In our first implementation we did not bother
doing this. Instead we just kept the duplicate outcome states.
When later implementing the merge, we found that it slowed
down problem solving by a factor of 2 or more and typically
reduced the number of states expanded by no less than half.
For problems that ran up against our memory limits, where
only half could be solved, about 4 out of 5 of those could be
solved more quickly without bothering to merge states.

This slowdown comes from having to store and lookup
these states in a container.3 One way we tried to improve
merging was to loosen the definition of equality of states.
A simple, effective tactic was to consider a method’s state
equivalent to another if neither would ever accumulate qual-
ity, that is if they failed (received a zero quality outcome
or failed to meet its deadline), were aborted, or were aban-
doned.

A strategy that did not help was to ignore time when there
were no more pending methods or the current time was or-
dered the same with respect to the release times of the pend-
ing methods. Because most of the computation time is spent
in generating states and looking them up, the extra time for
doing this simple check actually slows down performance
by an order of magnitude and did not significantly reduce
the number of states expanded.

Estimating Expected Quality
Part of the struggle of policy search is proving that one ac-
tion is at least as good as all others. An A* search computes
cost-so-far (function g()) and a heuristic overestimate of ad-
ditional cost (function h()) for each search state, choosing
to always explore the one with the least f() = g() + h().
A heuristic is better if the overestimate is smaller because it
will expand no more search states than a greater (less accu-
rate) overestimate. In addition, if one frontier state’s upper
bound f() is less than another state’s lower bound estimate
g(), then not only is it not worth exploring, its memory can
be reclaimed.

Since our optimal policy search is maximizing expected
quality, instead of settling for bounds on eventual quality,
we can more accurately use bounds on expected quality. In-
stead of settling for current quality as a lower bound, we can
compute a more accurate lower bound on expected quality
by including the expected quality of already executing meth-
ods that we know we will not abort. We have not yet tried
to include quality from still pending methods. This is more
difficult since is not enough to know just that the basic con-
straints of timing and enabling are guaranteed, but also that
there is no opportunity cost to other methods whose tim-
ing or quality could be affected indirectly. Even then, it is
necessary to avoid abandoning the method, so that quality

3We used a Standard Template Library map, which is imple-
mented as a binary red-black tree. We intend to try other potentially
quicker data structures such as a hash or trie, but haven’t since our
focus has been on the memory limit.



is not counted where it may not be accumulated, leading to
improper policy action choices.

One of our bugs in computing expected values for bound-
ing the AO* search was in computing quality for tasks
through quality accumulation functions (QAFs). We were
computing task expected quality bounds on expected qual-
ity bounds of subactivities. However, this is incorrect for
min/max QAFs. For example, if a task is a max over two
methods, each of which has quality distribution of (1.0,
p=0.5; 2.0, p=0.5), the expected quality is 1.5 for each
method, but the task’s expected quality is not simply the
max of 1.5 and 1.5. The task’s quality is 2.0 for 3 of the
4 outcome combinations and 1.0 in the one case where both
methods have qualities of 1.0, so the expected quality of the
task is actually 1.75.

So, in order to compute bounds for the root task for the
overall state, the QAFs must, in general, be evaluated on
the quality distributions of its children. Calculating QAFs
over distributions has slowed performance by a factor of 2,
but the better expected quality estimates cut the number of
states being expanded roughly in half.

Joint Action Explosion
One technique that did not help improve performance in-
volved partially expanding a subset of possible joint actions
when there were too many to all fit in memory. The idea
was that even if the set of joint actions were intractable,
the optimal policy may not, and we might at least get good
bounds on the optimal expected quality. This expansion is
achieved by only expanding actions of one agent from a state
and not expanding outcomes until the last agent’s actions are
expanded. Thus, some combinations of actions can be ex-
plored without losing track of which ones had not yet been
explored.

While some expansion was possible (where before it was
not), the problems of this larger size that we tried were not
solvable, and we have been unable to get useful bounds on
expected quality for them (e.g. quality [1.0, 100.0]). The
partial expansion was not helpful for the smaller problems
either, roughly doubling the time to solve them.

Conclusion
We have described our experience in terms of challenges and
strategies in trying to scale centralized, multiagent optimal
policy search for C-TÆMS problems with uncertainty in ac-
tion quality and duration. Partly due to an efficient state
expansion, the search exhausted memory quickly, so search
speed rarely inhibited scalability. Thus, our main focus has
been to minimize the number of states expanded. We found
that it is difficult to avoid redundant and obviously subopti-
mal policy exploration, mentioning some strategies that we
have not tried but think may be fruitful. Many of the tech-
niques we tried to minimize exploration of the state space
had limited or no success.

Here’s a summary of techniques that did and did not help
in scaling to larger problems.

Techniques that helped scaling:
• efficient enumeration/creation of actions and states,

• selective start and abort times,
• more precise expected quality estimates (trading time for

space), and
• instantiating duplicates of equivalent state to avoid the

overhead of a lookup container.
Techniques that did not help scaling:
• merging equivalent outcome states to avoid expanding du-

plicates (same as last bullet above),
• using more inclusive equivalence definitions, and
• partially expanding actions to avoid the intractability of

joint actions.
Although the literature on general MDP research is use-

ful, we find that the structure provided by a modeling lan-
guage can be exploited in many ways, of which we have
only been able to scratch the surface. In the future, we hope
to make better connections between the problems and strate-
gies found with C-TÆMS and those of other STRIPS based
modeling languages.

Acknowledgments
Alan Garvey greatly contributed to our research and devel-
opment by providing a large number and variety of problem
sets and finding boundary problems that we could and could
not solve. The research described in this paper was carried
out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with DARPA.

References
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to act using real-time dynamic programming. Artificial
Intelligence 72(1-2):81–138.
Boddy, M.; Horling, B.; Phelps, J.; Goldman, R.; Vin-
cent, R.; Long, A.; Kohout, R.; and Maheswaran, R. 2005.
C TAEMS language specification. available from authors.
Decker, K., and Lesser, V. R. 1993. Quantitative Modeling
of Complex Environments. International Journal of Intel-
ligent Systems in Accounting, Finance and Management.
Special Issue on Mathematical and Computational Models
and Characteristics of Agent Behaviour. 2:215–234.
Erol, K.; Hendler, J.; and Nau, D. 1994. Semantics for
hierarchical task-network planning. Technical Report CS-
TR-3239, University of Maryland.
Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2:189–208.
Ginsberg, M. L., ed. 1987. Readings in nonmonotonic
reasoning. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.
Hansen, E. A., and Zilberstein, S. 2001. Lao*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129(1-2):35–62.
Maheswaran, R. T.; Szekely, P.; Becker, M.; Fitzpatrick,
S.; Gati, G.; Jin, J.; Neches, R.; Noori, N.; Rogers, C.;



Sanchez, R.; Smyth, K.; and VanBuskirk, C. 2008. Pre-
dictability & criticality metrics for coordination in com-
plex environments. In 7th International Joint Conference
on Autonomous Agents and Multiagent Systems.
Mausam, and Weld, D. S. 2005. Concurrent probabilistic
temporal planning. 120–129.
Musliner, D. J.; Durfee, E. H.; Wu, J.; Dolgov, D. A.; Gold-
man, R. P.; and Boddy, M. S. 2006. Coordinated plan man-
agement using multiagent MDPs. In Working Notes of the
AAAI Spring Symposium on Distributed Plan and Schedule
Management.
Smith, S.; Gallagher, A.; Zimmerman, T.; Barbulescu, L.; ;
and Rubinstein, Z. 2007. Distributed management of flex-
ible times schedules. In Proceedings of the International
Joint Conference on Autonomous Agents and MultiAgent
Systems, 1–8. New York, NY, USA: ACM.
van Hoeve, W. J.; Gomes, C. P.; Selman, B.; and Lombardi,
M. 2007. Optimal multi-agent scheduling with constraint
programming. In Proceedings of the Innovative Applica-
tions of Artificial Intelligence. AAAI Press.
Wagner, T. A.; Raja, A.; and Lesser, V. R. 2006. Modeling
uncertainty and its implications to sophisticated control in
TÆMS agents. Journal of Autonomous Agents and Multi-
Agent Systems 13(3):235–292.
Wu, J., and Durfee, E. H. 2007. Solving large TÆMS
problems efficiently by selective exploration and decompo-
sition. In Proceedings of the 6th International Joint Con-
ference on Autonomous Agents and Multiagent Systems, 1–
8. New York, NY, USA: ACM.


