
Continual Coordination of Spacecraft through Shared Activities

Bradley J. Clement and Anthony C. Barrett
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, M/S 126-347

Pasadena, CA 91109-8099
fbclement, barrettg@aig.jpl.nasa.gov

Abstract

Interacting agents that interleave planning and execu-
tion must reach consensus on their commitments to each
other. In domains where agents have varying degrees of
interaction and different constraints on communication
and computation, agents will require different coordi-
nation protocols in order to efficiently reach consensus.
ShAC (Shared Activity Coordination) is a framework
for designing coordination protocols with an algorithm
for continually coordinating agents using these proto-
cols during execution. We show how to construct a wide
range of protocols using this framework and describe
how ShAC coordinates two rovers and an orbiter in a
simulated Mars scenario.

Introduction
When interleaving planning and execution, an agent ad-

justs its planned activities as it gathers information about the
environment and encounters unexpected events, and inter-
acting agents coordinate these adjustments to manage com-
mitments with each other. The work presented here ad-
dresses how these agents can interleave coordination with
execution. Our ultimate goal is to create interacting agents
that autonomously adjust their coordination protocols with
respect to unexpected events and changes in communication
or computation constraints so that the agents can most effi-
ciently achieve their goals. This paper presents a framework
for designing coordination protocols with an algorithm for
continually coordinating agents using these protocols during
execution.

Our approach, called Shared Activity Coordination
(ShAC), provides a general algorithm for interleaving plan-
ning and the exchange of plan information based on shared
activities. Agents coordinate their plans by establishing con-
sensus on the parameters of shared activities. Figure 1 illus-
trates this approach where three agents share one activity
and two share another. The constraints denote equality re-
quirements between shared activity parameters in different
agents. The left vertical box over each planner’s schedule
represents a commit window that moves along with the cur-
rent time. Activities in this window must be passed on to the

The research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.

execution system, which sends state updates to the planner.
Consensus must be established for shared activities before
this window to avoid violated commitments between agents.
Thus, we introduce the notion of a consensus window (to the
right of the commit window) within which consensus must
be quickly established before committing. Since consensus
is hard to maintain when all agents can modify a shared ac-
tivity’s parameters at the same time, agents must participate
in different coordination roles that specify which agent has
control of the activity. As shown in the figure, ShAC inter-
acts with the planning and execution by propagating changes
to the activities, including their parameters and constraints
on the values of those parameters.

ShAC’s ability to continually coordinate depends on in-
terleaved planning and execution. As a result, the planner
must be able to respond to execution failures and state up-
dates from the execution system. Our implementation inter-
faces with one such continual planning system, CASPER
(Continuous Activity Scheduling Planning Execution and
Replanning) (Chien et al. 2000). Instead of batch-planning
in episodes, CASPER continually adapts near and long-
term activities while re-projecting state and resource profiles
based on updates from sensors.

First we describe the shared activity model, the ShAC al-
gorithm, and its interface to the planner. Then we specify
some generic roles and protocols using the ShAC frame-
work that build on prior coordination mechanisms. Then we
describe how our current implementation of ShAC is used
to coordinate the communication of two rovers and an or-
biter in a simulated Mars scenario. We follow with future
research needs revealed in this scenario and comparisons to
related work.

ShAC
ShAC is implemented as a module on an agent that com-
mands the agent’s planner while communicating with other
agents. ShAC keeps track of shared activities and constraints
on these activities.

Shared Activities
The model of a shared activity is meant to capture the in-
formation that agents must share, including control mech-
anisms for changing that information. A shared ac-
tivity is a tuple hparameters, agent roles, protocols,



execution execution execution

planner planner planner

agent agent agent

ShAC ShAC ShAC

==
=

activity
updates

activity
updates

activity &
constraint
updates

activity
updates

activity, constraint,
& role updates

activity, constraint,
& role updates

activity &
constraint
updates

activity &
constraint
updates

Figure 1: Activities shared among continual planners

decomposition, constraintsi. The parameters are the
shared variables and current values over which agents must
reach consensus by the time the activity executes. The agent
roles determine the local activity of each agent correspond-
ing to the joint action. To provide flexible coordination
relationships, the role activities of the shared activity can
have different conditions and effects as specified by the lo-
cal planning model. The shared parameters map to local
parameters in the role activity.

For example, a shared data communication activity can
map to a receive role activity for one agent and a send
role activity for another. Shared parameters could specify
the start time, duration, transfer rate, and data size of the
activity. The data size is depleted from the sender’s mem-
ory resource but added to the receiver’s memory. The agents
could have separate power usages for transmitting and re-
ceiving. In this case the resources are not shared. Another
shared activity could be the use of a common transport re-
source. Although one agent in an active transit role actually
changes position, other agents in passive roles have local
activities that only reserve the transport resource. Figure
shows an instance of this shared activity where an orbiter
receives communication from a rover.

Protocols are the mechanisms assigned to each agent (or
role) that allow the agents to change constraints on the
shared activity, the set of agents assigned to the activity, and
their roles. In Figure , both the orbiter and rover use an argu-
mentation protocol to negotiate the scheduling and attributes
of the communication. Constraints will be described in the
next section, and a variety of protocols will be defined in the
Protocols section.

The shared decomposition enables agents to select differ-
ent team methods for accomplishing a higher level shared
goal. Specifically, the decomposition is a set of shared
subactivities. The agents can choose the decomposition
from a pre-specified set of subactivity lists. For example,
a joint observation among orbiters could decompose into ei-

ther (measure, process image, downlink) or (mea-
sure, downlink).

Constraints
Constraints are created by agents’ protocols to restrict sets of
values for parameters (parameter constraints) and permis-
sions for manipulating the parameters, changing constraints
on the parameters, and scheduling shared activities (permis-
sion constraints). These constraints restrict the privileges
(or responsibilities) of agents in making coordinated plan-
ning decisions. By communicating constraints, protocols
can come to agreement on the scheduling of an activity with-
out sharing all details of their local plans.

A parameter constraint is a tuple hagent, parameter,
value seti. The agent denotes who created the constraint.
Some protocols differentiate their treatment of constraints
based on the agent that created them. For example, the asyn-
chronous weak commitment algorithm prioritizes agents so
that lower-priority agents only conform to higher-priority
agent constraints (Yokoo & Hirayama 1998). Agents can
add to their constraints on a parameter, replace constraints,
or cancel them. A string parameter constraint, for example,
can restrict a parameter to a specific set of strings. An integer
or floating point variable constraint is a set of disjoint ranges
of numbers. Scheduling constraints can be represented as
constraints on a start time integer parameter. This is shown
in Figure where the rover restricts the start time of the com-
munication between two eight minute intervals.

Permission constraints determine how an agent’s planner
is allowed to manipulate shared activities. The following
permissions are currently defined for ShAC:

� parameters - change parameter values

� move - set start time

� duration - change duration of task

� delete - remove from plan



shared_activity communicate comm_id_12 {
time start_time = 2004-302:09:30:00; // date
int duration = 200; // seconds
int data_size = 25600; // 25.6 Mbits
real xmit_rate = 128.0; // 5.0 Kbps
int priority = 1; // critical
roles =

receive by orbiter,
send by rover;

protocols =
receive argumentation,
send argumentation;

permissions =
receive (move, delete, xmit_rate),
send (delete, data_size, priority);

parameter_constraints =
rover start_time = ([2004-302:09:30:00, 2004-302:09:38:00],

[2004-302:18:30:00, 2004-302:18:38:00]);
}

Figure 2: An instance of a shared communication activity between a rover and orbiter

� choose decomposition - select shared subactivity of an or

activity

� add - add to plan1

� constrain - send constraints to other agents

In the communication example in Figure , the receiver
is allowed to reschedule (move) the activity, delete it, or
change the transmission rate. The sender cannot move the
activity, but can delete it and change the requested size and
priority of the data.

Coordination Algorithm
The purpose of the ShAC algorithm is to negotiate the
scheduling and parameters of shared activities until consen-
sus is reached. Figure 3 gives a general specification of the
algorithm. ShAC is implemented separate from the plan-
ner, so steps 1 through 3 are handled by the planner through
an interface to ShAC. Step 4 invokes the protocols that po-
tentially make changes to refocus coordination on resolving
shared activity conflicts and improving plan utility. ShAC
sends modifications of shared activities and constraints to
sharing agents in step 5. In step 6, shared activities and con-
straints are updated based on changes received from other
agents.

Ignoring coordination, a continuous planner must deter-
mine when it is appropriate to release activities to the exe-
cution system. In some cases, an activity involved in a con-
flict may either be released (requiring the planner to recover
from potential failures) or postponed (to allow the planner
to recover before a failure occurs). CASPER keeps a com-
mit window (an interval between the current time and some
point in the near future) within which activities cannot be
modified and passes these activities to the execution system.

1This permission applies to a class of shared activities (i.e. an
agent may be permitted to instantiate a shared activity of a particu-
lar class).

This interaction with the execution system becomes more
complicated when agents share tasks. ShAC must make sure
that when a shared activity is released, all agents release it
while in consensus on the start time and other parameters of
the task. Ideally the agents should establish consensus be-
fore the commit window. ShAC avoids changes in the com-
mit window by keeping a consensus window that extends
from the commit window forward by some period specific
for the activity. As time moves forward, the windows extend
forward. When a shared activity moves into the consensus
window, the agents switch to the simple consensus protocol
to try and reach consensus before the activity moves into the
commit window.

Protocols
In general, protocols determine when to communicate, what
to communicate, and how to process received communica-
tion. During each iteration of the loop of the coordination
algorithm (Figure 3), the protocol determines what to com-
municate and how to process communication. A protocol is
defined by how it implements the following procedures to be
called during step 4 of the ShAC coordination algorithm for
the shared activity to which it is assigned:

1. modify permissions of the sharing agents

2. modify locally generated parameter constraints

3. add/delete agents sharing the activity

4. change roles of sharing agents

The default protocol, representing a base class from which
other protocols inherit, does nothing for these methods.
However, even with this passive protocol, the ShAC algo-
rithm still provides several capabilities:

joint intention A shared activity by itself represents a joint
intention among the agents that share it.



Given: a plan with multiple activities including a set of shared activities with constraints and a projection of
plan into the future.

1. Revise projection using the currently perceived state and any newly added goal activities.

2. Alter plan and projection while honoring constraints.

3. Release relevant near-term activities of plan to the real-time execution system.

4. For each shared activity in shared activities,

� if outside consensus window,
– apply each associated protocol to modify the shared activity;

� else
– apply simple consensus protocol.

5. Communicate changes in shared activities.

6. Update shared activities based on received communications.

7. Go to 1.

Figure 3: Shared activity coordination algorithm

mutual belief Parameters or state assertions of shared ac-
tivities can be updated by sharing agents to establish con-
sensus over shared information.

resource sharing Sharing agents can have identical con-
straints on shared states or resources.

active/passive rolesSome sharing agents can have active
roles with execution primitives while others have passive
roles without execution primitives.

master/slave rolesA master agent can have permission to
schedule/modify an activity that a slave (which has no
permissions) must plan around.

The following sections describe some subclasses of this
abstract protocol, demonstrating capabilities that each pro-
tocol method can provide.

Argumentation
Argumentation is a technique for negotiating joint beliefs or
intentions (Kraus, Sycara, & Evanchik 1998). Commonly,
one agent makes a proposal to others with justifications. The
others evaluate the argument and either accept it or counter-
propose with added justifications. This technique has been
applied to teamwork negotiation research to form teams, re-
organize teams, and resolve conflicts over members’ beliefs
(Tambe & Jung 1999). It can also be used to establish con-
sensus on shared activities.

A shared activity and associated parameter values are the
proposal or counterproposal. Justifications are given as pa-
rameter constraints. A proposal is a change to a shared ac-
tivity that does not violate any parameter constraints. A
counterproposal may violate constraints. Protocol method
2 must be implemented to provide the parameter constraint
justifications for proposals and counter-proposals. In order
to avoid race conditions, protocol method 1 regulates per-
missions.

Argumentation method 1

� if this agent sent the most recent proposal/counterproposal

– if planner modified shared activity
� remove self’s modification permissions

� else

– give self modification permissions (e.g. move and
delete)

Argumentation method 2

� if planner modified shared activity

– generate parameter constraints describing locally con-
sistent values

As an example, one agent can propose an activity with
a particular start time and add justifications in the form of
all intervals within which the shared activity can be locally
scheduled. Other agents can replan to accommodate the pro-
posal and counter-propose with their own interval restric-
tions if replanning cannot accommodate others’ constraints.
If the agents cannot establish consensus before the consen-
sus window, a higher ranking agent can mandate a time that
benefits most of the agents. Of course, there are many varia-
tions on this example. Agents may be restricted because they
are slaves or do not have constraint permissions to counter-
propose.

Delegation
Delegation is a mechanism where an agent in a passive dele-
gator role assigns and reassigns activities to different subsets
of agents in active subordinate roles. The delegator and sub-
ordinate protocols only need

Delegator method 3

� if agent roles empty

– choose an agent to whom to delegate the activity
– add (agent, subordinate) to agent roles

Subordinate method 3

� if cannot resolve conflicts/threats involving activity

– remove self from agent roles



Constraint-Based Conflict Resolution
For this protocol, the agents initially have no permissions
to modify a proposed shared activity. They broadcast any
parameter constraints to the sharing agents as the planner
schedules other local or shared activities around the shared
activity while trying to satisfy as many of the others’ con-
straints as possible. After some time period, or once the
agents have converged on a set of constraints (not guaran-
teed), the agents switch to another protocol (e.g. argumenta-
tion) potentially reinstating permissions and negotiate final
parameter values or delete the activity. The protocol must
implement method 2 for generating parameter constraints
and method 4 to switch protocols.

Constraint-Based Conflict Resolution method 2

� if cannot resolve conflicts/threats involving shared activ-
ity
– update parameter constraints describing locally consis-

tent values
Constraint-Based Conflict Resolution method 4

� if reached consensus on constraints or time elapsed >

threshold
– switch to protocol for resolving conflicts

Centralized Conflict Delegator
Here, a single agent serves in a passive delegator role for
a set of shared activities. The delegator models all shared
resources and, thus, keeps track of all conflicts for a group
of active subordinates. Subordinates do not share activities
with each other. The delegator assigns conflicts to differ-
ent agents by delegating tasks involved in conflicts to differ-
ent subordinates and also sending the subordinates the corre-
sponding parameter constraints it generates indirectly from
the activities it shares with other subordinates. This protocol
can subclass from the basic delegation protocol. The differ-
ence is in how it chooses the agent to whom to delegate the
activity. Below we define this procedure, which is called
from Delegator method 3. This function ensures that agents
are not modifying the same activities or working on the same
conflicts (in order to avoid race conditions).

ChooseSubordinate method

� sort agents in increasing order of times this activity was
delegated to them

� for each agent
– if not delegated any activities involved in conflicts with

this one
� return agent

� return first agent

Application to Mars Scenario
Now we describe how ShAC is applied to a simulated sce-
nario involving two Mars Exploration Rovers (MERs) and
a Mars Odyssey orbiter. Different master/slave and ac-
tive/passive roles are defined using permission constraints
for the shared activities to implement a basic protocol for co-
ordinating communication to and from Earth. We will apply

some of the previously defined, more sophisticated protocols
to this domain in our future work.

The MERs (MER A and MER B) and Odyssey can com-
municate with Earth directly, but the MERs can option-
ally route data through Odyssey, which communicates with
Earth at a higher bandwidth. The rovers need daily commu-
nication with ground operations to receive new goals. The
rovers will often fail to traverse to a new target location and
cannot proceed until new instructions come from ground op-
erations. In this scenario both MERs must negotiate with
Odyssey to determine how to most quickly get a response
from ground after sending an image of the surrounding area.

Each MER has a communication state shared with
Odyssey that tracks when the image is generated, when it
gets to Earth, and when the response from ground opera-
tions arrives to the rover. Shared activities for changing the
state are shown for different routing options in Figure 4. The
rover’s activity for generating an image from its panoramic
camera changes the state to request to communicate its
need to downlink and receive an uplink. Activities for send-
ing the image to Earth (either directly or through Odyssey),
change the state to a wait for uplink state to indicate
that the rover will then be waiting for the uplink. Ground op-
erations needs a period of time to generate new commands
for the uplink, so if the uplink is received by Odyssey, the
state changes to received to indicate that now the rover
can get the uplink from Odyssey. Once the rover receives the
uplink, the state changes back to the normal no pending
request state. Rover tasks (such as a traverse) need the
uplinked data before executing, so it places a local con-
straint that shared state be no pending request dur-
ing its scheduled interval. There are no shared resources
although communication requests from a MER have effects
on many local resources of both the MER and Odyssey. All
of the shared activities have active master and passive slave
roles. MER and Odyssey both take the master role for activ-
ities labeled for them in Figure 4.

CASPER planners for each of the MERs and Odyssey
first build their three-day plans separately to optimize sci-
ence data return, resolving any local constraints on memory,
power, battery energy, etc. The three-day schedules consti-
tute over 600 tasks for each MER and over 1400 for Odyssey
with 30 state/resource variables for each MER and 22 for
Odyssey.

When coordination begins, the planners send their com-
munication requests to the other planners. Before these up-
dates are received, the initial views of the shared uplink sta-
tus are shown in Figure 5. The MERs begin with conflicts
with their traverse tasks because the uplink has not yet been
received from Earth. The coordination algorithm commands
the planners to repetitively process shared task updates, re-
plan to resolve conflicts by recomputing the shared state and
modifying scientific measurement operations to adjust for
the increased power and memory needs, and send task up-
dates. After a minute and a half, MER A, B, and Odyssey
agree on routing the downlink and uplink through Odyssey
to get the uplinked commands in time for the traversal on



no pending
request

odyssey
received

request
no pending

request
wait for
uplink

critical
pancam

comm
earth

comm
odyssey

MER activities
Odyssey activities

no pending
request

request
no pending

request
wait for
uplink

comm
earth

comm
odyssey

critical
pancam

comm
earth

comm
earth

through
Odyssey

direct

must-be wait

must-be wait

wait for
uplink

wait for
uplink

downlink critical data uplink from Earth

Figure 4: Downlink/uplink states for a rover

different days.2 The resulting shared state is shown at the
bottom of Figure 5. The planners reach consensus that co-
ordination is complete and sleep while waiting for task up-
dates.

Then we triggered an anomaly in MER A’s plan causing
it to cancel its first day’s tasks and shift the entire sched-
ule forward a day. Before sending the updated shared tasks,
replanning was issued to resolve local constraints to avoid
propagating inconsistent state information to Odyssey. All
conflicts were resolved in a few seconds except the traverse
conflicts with a wait state. Then MER A sends a task up-
date to restart coordination. Coordination completes in less
than a minute with data again being routed through Odyssey.

While we have only experimented with simple protocols,
this application of ShAC to the Mars scenario shows how
planners can coordinate during execution while making min-
imal concessions to ideal plans and responding to unex-
pected events. In the next section, we discuss how ShAC
builds on related work and discuss new research challenges
for decentralized, coordinated planning.

Discussion and Related Work
Conflicts among a group of agents can be avoided by re-
ducing or eliminating interactions by localizing plan effects
to particular agents (Lansky 1990), and by merging the in-
dividual plans of agents by introducing synchronization ac-
tions (Georgeff 1983). In fact, planning and merging can
be interleaved (Ephrati & Rosenschein 1994). Earlier work
studied interleaved planning and merging and decomposi-
tion in a distributed version of the NOAH planner (Corkill
1979) that focused on distributed problem solving. More
recent research builds on these techniques by formalizing

2Odyssey’s planner ran on a SunBlade 1000, and the MERs ran
on a Sparc Ultra 60 and 80.

and reasoning about the plans of multiple agents at multi-
ple levels of abstraction to localize interactions and prune
unfruitful spaces during the search for coordinated global
plans (Clement & Durfee 2000).

DSIPE (desJardins & Wolverton 1999) employs a central-
ized plan merging strategy for distributed planners for col-
laborative problem solving using human decision support.
Like our approach, local and global views of planning prob-
lem help the planners coordinate the elaboration and repair
of their plans. DSIPE provides insight into human involve-
ment in the planning process as well as automatic informa-
tion filtering for isolating necessary information to share.
While our approach relies on the domain modeler to spec-
ify up front what information will be shared, ShAC supports
a fully decentralized framework and focuses on interleaved
coordination and execution.

In many ways this work is following the Generalized Par-
tial Global Planning approach to using a mix of coordina-
tion protocols tailored for the domain (Decker 1995). ShAC
offers an alternative framework for separating implementa-
tion of these mechanisms from the planning algorithms em-
ployed by specific agents. Unlike GPGP, ShAC provides a
modular framework for combining lower-level mechanisms
to create higher-level roles and protocols. Our future work
will build on GPGP’s evaluations of mechanism variations to
better understand how agents should coordinate for domains
varying in agent interaction, communication constraints, and
computation limitations.

Finally, TEAMCORE provides a robust framework for
developing and executing team plans (Tambe 1997; Pyna-
dath et al. 1999). This work also offers a decision-theoretic
approach to reducing communication within a collaborative
framework. Research is needed to investigate the integration
of coordinated planning with robust coordinated execution.

An assumption commonly made in multiagent research is



no pending
request

Odyssey

MER A

must wait

comm earth

MER activities Odyssey activities

critical
pancam

comm
earth

comm
earth

comm odyssey

traverse
comm
earth

no pending
request

request no pending
request

wait for
uplink

critical
pancam

comm
earth

comm
earth

C
oo

rd
in

at
ed

must wait

comm odyssey

traverse

no pending
request

odyssey
receivedrequest

no pending
request

wait for
uplink

comm earth

comm
earth

Figure 5: Downlink/uplink shared state for MER A. From top to bottom, Odyssey’s initial view, MER A’s initial view, and the
common view after coordination.

that agents will be able to communicate at all times reliably.
In the Mars scenario, the spacecraft communicate with each
other in varying time windows and frequencies, and the two
MERs can never directly talk to each other. Establishing
consensus on beliefs and intentions is impossible without
certain communication guarantees (Mullender 1995). Un-
derstanding the communication patterns that make consen-
sus possible and the overhead for establishing consensus is
critical for multiagent research.

Conclusion
We have introduced shared activity coordination as an ap-
proach to designing role-based coordination mechanisms for
planning agents. ShAC provides several coordination ca-
pabilities upon which we have specified a few higher-level
coordination protocols that exercise different aspects of the
ShAC model. We have also described an algorithm for con-
tinually coordinating planning agents during execution us-
ing these protocols. While our future work is aimed at eval-
uating the benefits of different protocols for different classes
of multiagent domains, we validate our approach in coordi-
nating three simulated spacecraft in the presence of an un-
expected event.

References
Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.; and Ra-
bideau, G. 2000. Using iterative repair to improve the
responsiveness of planning and scheduling. In Proc. ECP,
300–307.
Clement, B., and Durfee, E. 2000. Performance of coordi-
nating concurrent hierarchical planning agents using sum-
mary information. In Proc. ATAL, 213–227.

Corkill, D. 1979. Hierarchical planning in a distributed
environment. In Proc. IJCAI, 168–175.
Decker, K. 1995. Environment centered analysis and de-
sign of coordination mechanisms. Ph.D. Dissertation, Uni-
versity of Massachusetts.
desJardins, M., and Wolverton, M. 1999. Coordinating a
distributed planning system. AI Magazine 20(4):45–53.
Ephrati, E., and Rosenschein, J. 1994. Divide and conquer
in multi-agent planning. In Proc. AAAI, 375–380.
Georgeff, M. P. 1983. Communication and interaction in
multiagent planning. In Proc. AAAI, 125–129.
Kraus, S.; Sycara, K.; and Evanchik, A. 1998. Reaching
agreements through argumentation: a logical model and
implementation. Artificial Intelligence 104:1–70.
Lansky, A. 1990. Localized search for controlling auto-
mated reasoning. In Proc. DARPA Workshop on Innov. Ap-
proaches to Planning, Scheduling and Control, 115–125.
Mullender, S. 1995. Distributed Systems. Addison-Wesley
New York.
Pynadath, D.; Tambe, M.; Cauvat, N.; and Cavedon, L.
1999. Toward team-oriented programming. In Proc. ATAL.
Tambe, M., and Jung, H. 1999. The benefits of arguing in
a team. AI Magazine 20(4).
Tambe, M. 1997. Towards flexible teamwork. Journal of
Artificial Intelligence Research 7:83–124.
Yokoo, M., and Hirayama, K. 1998. The distributed con-
straint satisfaction problem: Formalization and algorithms.
IEEE Trans. on KDE 10(5):673–685.


