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Abstract 

Volcanic activity can occur with little or no 
warning.  Increasing numbers of space borne assets can 
enable coordinated measurements of volcanic events to 
enhance both scientific study and hazard response.  We 
describe the use of space and ground measurements to 
target further measurements as part of a worldwide 
volcano monitoring system.  We utilize a number of 
alert systems including the MODVOLC, GOESVOLC, 
US Air Force Weather Advisory, and Volcanic Ash 
Advisory Center (VAAC) alert systems.  Additionally 
we use in-situ data from ground instrumentation at a 
number of volcanic sites, including Iceland. 

Artificial Intelligence Software plays a key role in 
the Volcano Sensorweb.  First, several in-situ volcano 
monitoring networks use “intelligent” data interpretation 
software to trigger alerts that can then be used to allocate 
network resources, notify human agents, and even task 
space observations.  Second, the Earth Observing One 
(EO-1) spacecraft uses Artificial Intelligence Software to 
automatically task the spacecraft to execute observations.  
Third, EO-1 also interprets thermal data onboard to allow 
for faster notifications of volcanic activity.  Finally 
some data interpretation steps use intelligent software 
such as Random Decision Forest Methods used to 
automatically estimate volcanic plume heights in 
Worldview-2 Imagery.. 

1 Introduction 

The study of volcanoes is important for both 
scientific and humanitarian reasons.  From a scientific 
standpoint, volcanic gas and ash emissions contribute 
significantly to the terrestrial atmosphere.  Ash 
depositions and lava flows can also greatly affect local 
environments.  From a humanitarian standpoint many 
people live within a short distance of active volcanoes 
and therefore can be affected via both atmospheric (ash, 
debris) and lava flow phenomena. 

Satellite study of volcanoes is very useful because it 
can provide data for large areas of the Earth’s surface 
with a range of modalities ranging form visible to 
infra-red, radar and beyond.  Satellite sensing can also 
access remote locations and hazardous regions without 
difficulty.  One issue with space-based volcano 
measurement is that atmospheric conditions (e.g. clouds) 
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can interfere with many sensors (visible, IR).  
Additionally, for taskable (e.g., point and shoot) sensors, 
satellite contention for targets is high (e.g. other targets 
may be competing for observation time) so that 
knowledge of specific volcanic activity (e.g. timely 
alerts) may be required in order to task to acquire 
volcanic imagery. 

In-situ sensing can provide a valuable range of 
complementary information such as seismographic, 
discharge, acoustic, and other data.  However many 
volcanoes are not instrumented with in-situ sensors and 
even those that have sensor networks typicall have only a 
relatively small numbers of point sensors.  
Consequently, ideal volcanic study synergistically 
combines space and in-situ measurements  

This paper describes an effort to integrate 
space-borne sensing from MODIS (Terra and Aqua), 
ALI (EO-1), Worldview-2, and in-situ sensing, in an 
automated scheme to improve global volcano monitoring.  
Specifically, we describe a “sensorweb” concept in 
which a number of volcano monitoring systems are 
linked together to more accurately monitor volcanic 
activity, and use this activity measurement to 
automatically task space assets to acquire further satellite 
imagery of ongoing volcanic activity.  We discuss the 
space and ground sensors and systems and how they are 
linked together.  We also describe results from 
operations of this system with a focus on the Earth 
Observing One mission as it has been executing a 
volcano monitoring campaign for over a decade. 

Because the focus of this meeting is Artificial 
Intelligence (AI), we highlight the use of AI in the 
Volcano sensorweb, specifically in (1) intelligent event 
detection; (2) retasking EO-1 to observe detected 
volcano events; and (3) in automatic interpretation of 
volcanic events. 

2 Volcano Event Detection using Space 
and Ground Triggers 

Our volcano sensorweb uses a number of volcano 
monitoring systems to track volcanic activity worldwide 
(see Table 1 at the end of this paper).  We incorporate 
numerous space-based and in-situ sensors to detect 
volcanic activity.  However, in this section we focus on 
several detection agents that have a more Artificial 
Intelligence Component.  

In 2008-2009 JPL, USGS/CVO and Washington 
State University collaborated to deploy a set of 
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wirelessly networked smart sensors [Huang et al. 2010] 

to Mount Saint Helens (See Figure 1).  These sensors 
had sophisticated onboard smarts as well as network 
smarts and ground- to space and space to ground 
triggering and reconfiguration was demonstrated.   

 Specifically, on-node interpretation software used 
RSAM measures to detect seismic events and transmit 
data at a higher temporal resolution. Additionally, at the 
network level, based on these alerts and raw data, an 
extensible data analysis framework enables evidence and 
rule-based interpretation of events to adjust network 
quality of service QoS to allow this higher bandwidth of 
data (see Figure 2).  This same interpretation software 
can issue alerts beyond the CVO to inform other entities 
as well as trigger space-based observations (e.g., EO-1). 

  

The volcano sensorweb has been linked up with the 
monitoring network of in-situ sensors at Iceland run by 
the Iceland Met Office (www.vedur.is).  The Iceland 
Met office has a sophisticated network of sensors to 
monitor volcanic activity in Iceland including 
seismographic, strain, GPS, and runoff sensors. 

The Volcano Sensorweb triggers space observations 
from seismic signatures (such as earthquake intensity, 
location, trending intensity, and shallowing depth).  
Specifically, since 2010, an operational software agent 
interprets the earthquake alerts from the Iceland Met 
Office.  This software agent compiles evidence of a 
volcanic event where each earthquake event is assessed 
for its magnitude and proximity to known volcano 
locations.  If the combined evidence, using an 
exponential fall-off model in time and distance, 
accumulates sufficient evidence to exceed an 
expert-derived threshold, an alert is issued and 
space-based observation requests are triggered.  

We have also been investigating the potential to use 
stream flow rate sensors as indications of volcanic 
activity.  Many Icelandic volcanoes are covered with 
glacier therefore increases in stream flow rates due to 
melting ice can be an early indicator of volcanic activity. 
While we have executed a manually triggered 
observation based on expert analysis of the situation, we 
have not yet developed an automatic sensorweb 
triggering mechanism of this type (see Figure 4 for 
examples of flow-rate data and observation). 

!
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3 Automated Response Imagery Using 
Earth Observing One and the Autonomous 
Sciencecraft 

The Earth Observing One (EO-1) spacecraft has 
automated tasking capability [Chien et al. 2005, Chien et 
al. 2010] that enables electronic submission of prioritized 
observation requests and automated retasking. The 
sensorweb uses the above alert systems to automatically 
task volcano observations based on scientist specified 
observation campaigns.  The dataflow of this system is 
shown below in Figure 4.  The sensorweb agents for the 
monitoring systems (e.g. MODVOLC, GOESVOLC, 
AFWA…) report the volcanic activity as “science alerts” 
which specify: location, event type, and other 
information such as confidence, size, severity, etc.  The 
Science Event Manager processes the alerts and matches 
them up with scientist defined “observation campaigns” 
that describe situations in which science alerts or 
combinations of alerts result in observations requests or 
sets of requests.  The EO-1 mission planning system 
(using the ASPEN system) then attempts to 
accommodate these observations requests while 
respecting spacecraft operations constraints and 
competing observation priorities.   

ASPEN for EO-1 on the ground uses AI-based 
search combined with a timeline-based spacecraft 
modeling system [Chien et al. 2010] automate 
scheduling of EO-1 observations while respecting 
observation priorities and spacecraft operations 
constraints.  The Autonomous Sciencecraft software 
(ASE) onboard also routinely analyzes the thermal data 
acquired to generate science summary products. ASE 
also uses the CASPER embedded scheduler version of 
the ASPEN software onboard to reschedule observations 
in light of events detected onboard [Chien et al. 2005]. 

4 Automated Analysis of Remote Sensed 
Volcano Imagery and Data Delivery 

After the EO-1 data is acquired it is automatically 
processed for thermal signature extraction.  
Specifically, the Hyperion imagery is automatically 
processed onboard the spacecraft to derive surface 
temperature estimates using spectral slope estimation 
techniques [Davies et al. 2006] that can be downlinked 
very rapidly using engineering channel downlinks.   

When the full imagery is downlinked automatic 
ground processing can derive still further information.  
On the ground a more complete analysis can provide 
estimates of volumetric lava effusion rates. [Davies et al. 
2010]  In this process, first, hot pixels are identified 
based on spectral signature.  Next, each pixel is fitted to 
a blackbody radiation curve to derive a hot pixel area and 
temperature (e.g. an estimate that the pixel consists of a 
given area at ambient temperature and the remainder at a 
higher temperature).  Finally, the data from each of 
these hot pixels are aggregated and matched to a volcanic 
model that then estimates the lava effusion rate based on 
the thermal signature, area, heat lossage, and lava 
composition. 

 
4.1 Use of Machine Learning for automated volcanic 
ash detection in Worldview-2 data  
Another usage of AI in the volcano sensorweb is the 
application of machine learning random decision forests 
to classify ash in Worldview-2 imagery [Mclaren et al. 
2012].    

4.1.1 WorldView-2 data, Radiometric and 
atmospheric correction 
Our initial study used 10 WorldView-2 images acquired 
of the Eyjafjallajökull volcano in April and May of 2010.  
Of these 10 images, 2 contained no plume and 2 
contained plume, but no plume shadow. As the presence 
of a plume shadow is needed to estimate plume height, 
our study therefore focused on the 6 remaining images.   

We first converted these images to 
top-of-atmosphere reflectance [DigitalGlobe] before 
subsequent processing.  However, this method still left 
considerable variance in brightness that hampered 
across-image analysis.  We later switched to taking 
images not corrected to top-of-atmosphere reflectance 
and instead enhanced the contrast of each image using 
histogram equalization [Histogram].  We trained and 
ran our classifier on the histogram-equalized images.  
We oriented the resulting classification maps so that 
solar illumination came from the bottom of the image, 
using solar angles recorded in the observation metadata.  
Figure 6 shows a sample input image (at left) and a 
histogram equalized image (at right). 
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4.1.2 Machine learning approach 
We employ an image analysis technique method 
previously developed for in situ surface imagery. 
TextureCam [Thompson et al. 2012] is a framework and 
library of image processing and classification techniques 
intended for integration into a “smart” instrument.  A 
machine learning strategy exploits manually labeled 
image regions to train a random forest classifier 
[Breiman 2001, Shotton et al. 2008].  We train this 
system to recognize the statistics of local image patches 
corresponding to: airborne ash plume, shadow, and other 
(including land, water, and ice).  The learned classifier 
is intended to generalize to new scenes under different 
terrain and lighting conditions.  It ascribes a 
probabilistic surface classification to each pixel that 
incorporates cues learned from multispectral intensity, 
local texture, local pixel statistics, and other image data. 
  In order to apply TextureCam to the WorldView-2 
volcanic plume classification task we defined several 
input features.  First, we specified all ratios of the 8 
spectral bands available in WorldView-2 data, thus 
providing 28 features.  The resultant decision trees 
derive the classification map shown in Figure 2, created 
by running the learned classifier on the image in Figure 
6.  Figure 7 (left) shows the probabilistic surface 
classification for the plume class, Figure 7 (middle) 
shows the probabilistic classification for the shadow 
class, and Figure 7 (right) shows the classification map 
for the other class.  
   Typical decision tree classifiers can provide a single 
label for each pixel based on the Maximum A Posteriori 
(MAP) classification - the most probable class of each 
datapoint.  This label is based on image cues, but it is 
also influenced by the abundance of each class in the 
training images.  For this reason it may not be the 

optimal solution for the specific accuracy requirements 
of the task. Consequently users often modify 
classification thresholds to favor one class or another.  
Our analysis uses classification thresholds that optimize 
the end goal of accurately estimating the anti-sunward 
edge of the ash plume and the extent of anti-sunward 
shadow adjacent to the ash.  In order to further enhance 
accuracy we subsequently smooth and filter the 
classification map and apply segmentation techniques to 
sharpen the ash cloud boundary. Figure 8 shows the 
classification map for the image shown in Figure 6. 
   One of the key features of our interpretation method 
is that it should be scene, target, and illumination 
invariant.  We trained the method on one image and 
applied it to a set of 5 different images (a total of 6 
images in all).  While all of the images were of the 
same target (the Eyjafjallajökull volcano) the images 
span two days and a range of viewing angles.  Figure 4 
shows the histogram equalized image (left) and 
classification map (right) on a separate Eyjafjallajökull 
observation acquired on a different day. 
   Our detection method is able to classify large areas of 
ash plume and shadow but experiences a number of 
difficulties:   

1. Dark portions of the ash plume are classified as 
shadows.  Indeed, due to the billowing nature 
of the ash plume, there are often large shadowed 
areas within the ash plume.  Additionally, 
stair-step structure in the ash plume can also 
create large shadowed areas within the ash 
plume.  We attempt to address this issue by 
smoothing the classification map to remove 
these smaller shadows out of the final ash 
plume classified region. 

2. Large areas of land are classified as ash plume.  
Because our method relies on spectral features, 
land that may be covered with ash or spectrally 
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similar materials may be misclassified as ash in 
a plume.  We do not process these areas out 
but, because we are searching for shadow 
regions to the anti sunward side of ash plume 
regions, these types of misclassifications are 
unlikely to harm our calculations. 

3. Shadows may occur due to land features.  
Because these areas are likely to be small and 
not have large ash regions to the sunward 
direction, they do not harm our calculations. 

4. Plume shadow is partially or fully out of frame.  
Alternatively, the shadow may be in the image 
frame, but the plume is not. In general we 
discard plume and shadow estimates that run 
into the edge of the image. 

Figure 9 shows a histogram-equalized image and class 
map indicating some of the classification difficulties.  
In particular, blue arrows highlight the difficulties in 
spectral based discrimination between ash plume and 
certain ground surfaces (in this case ash on the ground). 

 
Once the ash cloud and shadow has been identified, 

the image can be processed to estimate shadow length 
and therefore plume height above sea level [Prata & 
Grant 2001].  This algorithm works by finding line 
segments that run from sunward to anti-sunward 
direction that consist of a region of ash followed by a 
region of shadow.  Each of these shadow measurements 
must then be corrected for: 

1. relative position of the spacecraft; 
2. relative position of the sun; 
3. relative ground elevation of the shadow point; 

to produce the estimate for the height of the plume edge 
above sea level.  We utilize the ASTER GDEM2 digital 
elevation map (30 m horizontal spacing, 1 m vertical 
spacing) to correct for terrain effects. 
One issue is that even assuming a perfect classification, 
our method produces an underestimate of plume because 
the plume possibly has a complex stair step structure 
rather than a single upward then windward structure.  In 
order to address this difficulty we select the longest 
shadow rays that trace from large areas of plume, and 
compute plume heights corresponding to these rays.  
Figure 10 shows the geometric calculation being 

performed to extract the plume height. 
  We then compute the mean and standard deviation of 
the top quartile of plume height estimates, and discard all 
plume height estimates farther than two standard 
deviations from this mean.  The remaining plumes 
constitute our final sample for analysis.  For our best 
estimate, we report the mean of the plume heights in this 
sample.  We also report the 20-80 percentile range of 
the remaining plume heights as an uncertainty estimate. 
 
4.2 Plume Height Estimation for the 2010 
Eyjafjallajökull eruption   
We took the trained ash/shadow/background classifier 
from a single image from 17 April 2010 WorldView-2 
overflight of the Eyjafjallajökull volcano and applied it 
that same image and to another 5 WorldView-2 images 
of the Eyjafjallajökull volcano.  In all the images were 
acquired both 17 April and 11 May 2010 with a 
moderate range of lighting conditions with widely 
varying plumes. Table 2 at the end of the paper shows 
the estimated plume height ranges derived using the 
above shadow-based algorithms for each of the images.  
Table 2 also shows the independent visual and radar 
measurements [Arason et al. 2011] estimating the plume 
heights on the same days in question.  The data shows 
reasonable agreement between the plume height 
estimated from WorldView-2 data and from other 
sources. 
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5 Impact of the Volcano Sensorweb – A 
Unique Dataset 

The Volcano Sensorweb has been in operation 
tasking EO-1 for over 10 years and has acquired 
thousands of images.  Figure 11 shows the distribution 
of Volcano Sensorweb alerts by type over the lifetime of 
the project (2004-present).  Figure 12 shows a 
breakdown of volcanic images acquired by target type..   

  
Figure 11: Volcano Science Alerts for  

2004-2015-  by Alert Source 
Alert Source Number of Alerts 
VAAC 66565 
MODVOLC 47963 
GOES Hotspot 35492 
AFWA 15031 
MEVO 2232 
HVO Tilt 386 
HVO SO2 333 
CVO Spider 79 
Iceland VEDUR EQ 58 
VSW Etna U. Firenze 54 
VSW Ecuador 1 
 
 
Figure 12: Volcano Images Acquired with EO-1 

2004-2015 by Volcano Target  
Number of 
Images 

Volcanoes with this number of images 
acquired 

500-1000 Erebus (970) 
300-499  
100-299 Belinda, Heard, Rabaul, Shiveluch, 

Nyiragongo, Ambrym, Popocateptl, Erte 
Ale, Colima, Tungurahua, Piton de la 
Fournaise, Mt St Helens, Etna 

50-99 Bagana, Anatahan, Karthala, Tolbachik, 
Yasur, Batur, Karymsky, Galunggung, 
Arenal, Home Reef, Dyngjujokull, 
Kliuchevskoi, Cleveland, Krakatau, Santa 
Maria, Sakura Jima, Shishaldin, Manam, 
Tinakalu,  

1-49 50 volcanoes 
1-9 90 Volcanoes 

 

6 Conclusions      

We have described a networking of science tracking, 
automated tasking, and data analysis systems into a 
sensorweb to enable global monitoring of volcanoes.  
This technique has enabled timely monitoring of 
unpredictable, varied, and short-lived volcanic activity. 
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Data source 
 

Asset 
name/location 

Data source VSW 
Trigger 

Coverage VSW 
operational 
history  

References Notes 

1. Spacecraft 
data processing 
application 

EO-1 – ASE 
(Autonomous 
Sciencecraft) 

Hyperion 
spectrometer 

Detection of 
hot pixels 

Global 2004- (Chien et al., 
2005b; 
Davies et al., 
2006a) 

Autonomous 
science-driven 
spacecraft 
operations 

1. Spacecraft 
data processing 
application 

MODVOLC 
(University of 
Hawai’i) 

Earth-orbiting 
MODIS 
instruments 

Detection of 
hot pixels 

Global On-line since 
2005 

(Wright et 
al., 2002; 
Wright et al., 
2004) 

MODIS is on the 
NASA Terra and 
Aqua spacecraft 

1. Spacecraft 
data processing 
application 

GoesVOLC 
(University of 
Hawai’i) 

Platforms in 
geostationary orbit  

Detection of 
hot pixels 

Primarily 
Hawai’i; 
Pacific rim 
volcanoes 

Online 
2005-2006 

(Davies et 
al., 2006b; 
Harris et al., 
1997; Harris 
and 
Thornber, 
1999) 

GOES spacecraft in 
geostationary orbit, 
observing Pacific 
and Pacific rim 

2. In situ 
instrumentation 

Mount Erebus 
Volcano 
Observatory 

Acoustic sensors Strombolian 
event 
detection 

Mount 
Erebus, 
Antarctica 

2004-2007 (Aster et al., 
2004; Davies 
et al., 2006a) 

Erebus Volcano 
Observatory is 
operated by New 
Mexico Tech, 
Socorro, NM 

2. In situ 
instrumentation 

USGS Hawaiian 
Volcano 
Observatory 
(Hawai’i) 

VALVE – tiltmeter 
network 

Tilt 
behavior 
indicative of 
impending 
eruption 

Kilauea, HI 2005-2006, 
2014- 

(Cervelli and 
Miklius, 
2003) 

VALVE 
incorporates tilt, 
seismic, gas data 
and automatically 
issues alerts.  In 
2014: tiltmeter 
network. 

2. In situ 
instrumentation 

USGS HVO / 
NPS-HVNP 
(Hawai’i) 

Volcano Monitors 
(VM) 

Anomalous 
SO2 
detection 

Kilauea, HI 2006-2008 (Boudreau et 
al., 2007; 
Davies et al., 
2008c) 

Demonstrated 
EO-1- VM two-way 
triggering via VSW 

2. In situ 
instrumentation 

USGS Cascades 
Volcano 
Observatory 
(Vancouver, 
WA) 

Volcano-monitoring 
deployable stations 
“Spiders” (seismic, 
acoustic, gps) 

Seismic 
alert 

Mt. St. 
Helens, WA 

2010- (LaHusen et 
al., 2010); 
(Chien et al., 
2010)  

Fastest 
trigger-observation 
response obtained 
so far:  2 hours (3 
July 2005) from 
CVO seismic event 
detection. 

2. In situ 
instrumentation 

Iceland 
Meteorological 
Office 

Seismic, tilt, melt 
water flow 
metering 

Seismic 
alert 

Iceland 
volcanoes 

2010- Davies et al., 
2013 

Grimsvötn 2011 
eruption (see 
Appendix 2 in 
Davies et al., 2013). 

2.  In situ 
instrumentation 

University of 
Firenze, Italy 

Acoustic sensors Explosions Etna 2012-2014 Marchetti et 
al., 2011 

Successful triggers 
of EO-1 
observations in 
2013 and 2014 

2.  In situ 
instrumentation 

Institute for 
Geophysics for  
Ecuador 
(IGEPN) 

Seismic Seismic 
alert (“State 
of the 
Volcano”) 

Tungurahua, 
Reventador 

2013  Specifically 
requests ALI 
daytime data to 
determine location 
and  plume extent 

3. Ash advisory Volcanic Ash 
Advisory Center 
(VAAC) alerts 
(7 centers) 

Multiple (e.g., pilot 
reports) 

Plume 
detection 

Global 2005- (Davies et 
al., 2006b) 

Many alerts 
world-wide, inc. 
Talang, 2005; 
Nyamulagira, 
2006; 
Nishino-Shima, 
2013 

3. Ash advisory US Air Force 
Weather Agency 
(AFWA) alert 

Multiple (e.g., pilot 
reports) 

Plume 
detection 

Global 2005-  Multiple detections 
and triggers 

4. Other reports 
of eruptions 

Multiple 
notification 
sources 

Alert of impending 
or ongoing activity  
from news media,  
colleagues 

Manual Global 2004-  Numerous events 
around the world, 
inc. Afar eruptions 
(Ethiopia/Eritrea), 
2006-2011; 
Puyehue Cordon 
Caulle (Chile), 
2011-2012 

Table 1: Volcano Sensorweb Linkages.  Reproduced with permission from [Davies et al., in press]. 
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Image Plume height estimate (in km above sea level) 
 WorldView-2 Shadow-based Estimates Estimates from [Arason et al. 2011] 
 # of 

samples 
Best estimate 
(mean) (in km) 

20th - 80th %-ile 
Range (in km) 

Visual Estimate Radar Estimate 

17 April 2010 290 2.66 2.52-2.97  
2.3-5.5km  
(Figure 9) 

 
4.8-8.5km  
(Figure 9) 

17 April 2010 199 3.57 3.51-3.64 
17 April 2010 585 3.06 2.94-3.15 
17 April 2010 8 4.35 4.35-4.36 
11 May 2010 12 3.02 3.02-3.03 3.8-4.4 km, 

mean=4.3km  
(Figure 10) 

3.6-4.9 km,  
mean = 4.3km 
(Figure 10) 

11 May 2010 154 4.58 4.47-4.67 

Table 2: Comparison of plume height estimates from WorldView-2 shadow based derivation to visual and radar 
measurements from [Arason et al. 2011] for WorldView-2 scenes from 17 April 2010 and 11 May 2010.  
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