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ABSTRACT 
This paper describes an integrated system for coordinating 
multiple rover behavior with the overall goal of collecting 
planetary surface data. The MISUS system combines techniques 
from planning and scheduling with machine learning to perform 
autonomous scientific exploration with cooperating rovers. A 
distributed planning and scheduling approach is used to generate 
efficient, multi-rover coordination plans, monitor plan execution, 
and perform re-planning when necessary. A machine learning 
clustering component is used to deduce geological relationships 
among collected data and select new science activities. A key 
concept promoted by this system is the use of goal 
interdependency information to perform plan optimization and 
increase the value of collected science data. We discuss how we 
represent and reason about goal dependency and utility 
information in our planning system and explain how this 
information can change dynamically during system use. We show 
through experimental results that our approach significantly 
increases overall plan quality versus a standard approach that 
treats goal utilities independently.  

 

Categories and Subject Descriptors 
I.2.11 [Distributed Artificial Intelligence]: Coherence and 
coordination, intelligent agents and multiagent systems. 
I.2.8 [Problem Solving, Control Methods, and Search]: Plan 
execution, formation, and generation. 

General Terms 
Algorithms, Performance, Design, Experimentation  

Keywords 
Planning, multi-agent coordination 

 

1.  INTRODUCTION 

NASA recently demonstrated that mobile robotic craft are a 
viable and extremely useful option for exploring the surface of 
other planets. The Mars Exploration Rovers (MER) have already 
gathered valuable scientific data that will be used to answer many 
questions about the Martian terrain. Future missions are being 
planned to send additional robotic explorers to Mars as well as to 
the moon and outer planets. To enable certain types of activities 
and to significantly increase overall science return, many of these 
future missions will require larger sets of rovers. These rovers 
will need to behave in a coordinated fashion where each rover 
accomplishes a subset of the overall mission goals and shares 
acquired information with other rovers and mission personnel. 
Furthermore, a key aspect of these missions will be highly 
autonomous rovers that can efficiently work together and require 
only limited communication with scientists and engineers on 
Earth. These rovers will be able to make many decisions on their 
own as to what new science data should be collected and how to 
perform the data gathering process. 

The Multi-rover Integrated Science Understanding System 
(MISUS) provides an approach for autonomously achieving 
planetary science goals using multiple robotic explorers. This 
system integrates techniques for machine learning and data 
analysis with those for planning and scheduling to enable 
autonomous multi-rover operations. Steps performed by the 
system include analyzing science data, evaluating what new 
science observations to perform, and deciding how to successfully 
perform them. Requested science observations are handled by a 
distributed planning and scheduling system which is responsible 
for delegating goals to rovers, achieving as many high priority 
science observations as possible given resource constraints, and 
sharing information between rovers on related goals. This system 
is also integrated with a simulation environment that can model 
different planetary terrains and the results of science data 
observations within them.  

A key feature of MISUS is its ability to reason about 
interdependent science goals. Most planning systems allow only 
simple, static dependencies to be defined among goals where 
these dependencies remain constant between different problems. 
However, in many domains, including space and planetary 
exploration, goals can be related through detailed utility models 
that significantly change from problem to problem. For instance, 
in one problem a particular goal’s utility may increase if other 
related goals can be achieved. In another problem, this utility 
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increase may differ or actually decrease if the same combination 
of goals is achieved. We consider these types of goals to be 
interdependent and have implemented a methodology for 
representing and reasoning about them. We have also designed 
our distributed planning system to handle this type of information 
when formulating and executing plans.   

2. MISUS OVERVIEW 

The MISUS system is comprised of three major components: 
 
• Data Analysis: A machine-learning system that creates a 

distribution model of the different rock types from the 
observed terrain. A clustering approach is used that employs 
an objective function for inferring geological relationships 
among data. This component also contains a prioritization 
algorithm that suggests new prioritized science observations 
to best increase the accuracy of its learned model. 

• Distributed Planning and Scheduling: A distributed 
planning and scheduling system that produces rover-
operation plans to achieve science goals. Planning is divided 
between a central planner, which creates a global plan for all 
rovers, and a distributed set of planners, which create 
detailed operation plans for individual rovers. Planning is 
continuous where plans are monitored during execution and 
re-planning is performed when necessary.  

• Environment Simulation: A multiple rover simulator that 
models different geological environments and rover-science 
operations within them. The simulator manages science data, 
tracks rover operations within the terrain, and reflects 
readings by rover science instruments. Currently, two types 
of instrument data are supported: visual texture data, which 
can be produced from rover camera images, and spectral 
data, which can be produced using a boresighted 
spectrometer. 

 
As shown in Figure 1, MISUS operates in a closed-loop fashion 
where the data analysis system can be seen as driving the 
exploration process based on its current model of the 
environment. Data gathered by each rover is used in a clustering 
algorithm to model the distribution of rocks according to their 
mineralogical composition and locations. Using this model, a 
prioritization algorithm generates new science goals based on 
their scientific value and ability to improve model accuracy. For 
example, if only limited data has been collected on a certain rock 
class, the algorithm may suggest new observations for that type of 
rock. New science goals are passed to the distributed planning 
system, which assigns goals to rovers in a way that minimizes 
required traverse distance and resources. A set of actions is 
produced for each rover that achieves the most valuable subset of 
goals given rover resource and operation constraints. During plan 
execution, the planning system continually monitors plan status. 
Re-planning can be used to repair or modify plans if unexpected 
events occur. Science goals may also be re-assigned to other 
rovers dynamically if the currently assigned rover can no longer 
achieve them. 

Currently we are applying MISUS to a planetary science 
application, which was designed through collaboration with JPL 
geologists and represents an example of how multiple rovers 
could investigate new areas of Martian (or other planetary) 
terrain. The primary science objective given to MISUS is to 

evaluate the distribution of rocks over a particular area of terrain. 
A team of three rovers is used where each rover has a camera and 
spectrometer to collect data. Rockfields are generated in our 
environment simulator, which maintains information on rock 
types, sizes and locations. Science goals consist of taking 
panoramic or point (i.e., local) measurements with each 
instrument. Goals are also given utilities that reflect their overall 
scientific value. Each rover is assumed to have a standard set of 
onboard resources and sensors, such as a solar panel and battery 
for power, memory to hold science data, and antennas that allow 
communication with Earth and/or other rovers. Note that the 
overall MISUS architecture could be used for many different 
science objectives. What drives the science process is the 
underlying model the data analysis system is tasked to learn. 
Other models could also be applied such as searching for a 
particular type of mineral composition or determining what 
process formed an area of terrain (e.g., volcanic, fluvial). 

3. PLANNING FOR MULTIPLE ROVERS 

To produce and coordinate plans for a team of rovers, we have 
developed a distributed planning system that enables plans at 
different abstraction levels to be continually updated with current 
goal, resource and state information. It also enables science goals 
to be dynamically redistributed to the most appropriate rover 
based on current conditions. As shown in Figure 2, our system is 
comprised of a central planner, which coordinates plans among 
rovers, and an onboard planner for each rover, which creates and 
manages detailed operation plans for that rover. New science 
goals are given to the central planner, which can be located on 
either a lander or one of the rovers. This planner creates a global 
plan for the rover team and is responsible for distributing goals 
among rovers. The central  planner has limited knowledge of 
rover resources and states, which it uses to divide goals in an 
attempt to minimize overall traverse distance. Each individual 
rover planner is responsible for creating its own detailed 
operations plan, which ensures no operation or resource 
constraints will be violated. This distributed framework was 
chosen due to its ability to encourage globally optimal plans while 
still operating under limited communication. MISUS was 
designed to handle rover teams where the amount of 
communication between team members can vary. In some 
applications rovers may all operate in a general area where 
communication is relatively inexpensive, e.g., several rovers 
working in close range to build a structure or habitat. In other 
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Figure 1: MISUS Closed-Loop Data Flow 
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applications rovers may be out of communication for varying or 
long periods of time, e.g., surveying a large terrain area that has 
hills or large rocky areas that can obstruct communication. 

3.1 Continuous Planning  

The CASPER continuous planner [3] is used as the base system 
for both the central and individual rover planners. CASPER was 
developed to address dynamic planning and scheduling where 
plans can be continually modified based on changing state and 
goal information. Unlike batch planners, where each plan must be 
created from scratch, CASPER continually updates its plan based 
on new information. When an unexpected event occurs, CASPER 
can quickly modify the plan to handle the new event while still 
achieving its objectives. CASPER’s main components include: 
 
• An expressive modeling language to allow the user to easily 

represent different domains. 
• A constraint management system for representing and 

maintaining domain operability and resource constraints. 
• A set of search strategies and repair heuristics 
• A temporal reasoning system for representing and 

maintaining temporal constraints. 
• An optimization system that allows users to define objective 

functions and preferences. 
• A graphical interface for visualizing plans as well as 

predicted effects on resources and states. 
• A real-time system that monitors plan execution and 

modifies the current plan based on activity, state and 
resource updates. 

 
CASPER takes as input a set of science and engineering goals and 
automatically generates an activity sequence that achieves the 
input goals. One of the primary search algorithms used to produce 

a valid sequence is iterative repair [13], which attacks plan 
conflicts individually. Conflicts occur when a plan constraint has 
been violated and can be temporal or involve a resource or state. 
Conflicts are resolved by performing one or more schedule 
modifications, such as moving, adding or deleting activities. An 
example of a conflict would be a rover that is in the incorrect 
location for a scheduled science observation. Resolving this 
conflict typically involves adding a new drive command to send 
the rover to the designated target location.  

In MISUS, CASPER is used to provide planning and re-planning 
capabilities for the central and individual rover planners. For the 
central planner, CASPER creates an abstract plan that divides 
goals up among rovers and monitors goal execution status. To 
make goal assignments that best use rover resources, the central 
planner uses a set of Multiple Traveling Salesman Problem 
(MTSP) search heuristics, which encourage plans that minimize 
overall traverse distance. The central planner also monitors goal 
achievability during plan execution. If a goal cannot be achieved 
by a particular rover, the central planner may choose to 
dynamically reassign the goal to another rover or delete the goal 
if it deems it unachievable.  

For the individual rover planners, CASPER creates a detailed 
execution plan using TSP heuristics and relevant constraints to 
order science targets, and then monitors that plan and its effect on 
rover states and resources. For example, it continually monitors 
information on states such as rover position, resources such as 
power, and execution status for  plan activities. If the plan does 
not proceed as expected, CASPER can iteratively re-plan to 
accommodate any unexpected events. These events could simply 
be activities finishing early or problems that may cause plan 
conflicts such as an unexpected obstacle blocking the rover’s path 
or a science activity taking more power than expected. Currently 
we use a rover hardware simulator that models operations of 
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Figure 2: Distributed Planning System Architecture 
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different JPL rovers. This simulator can be used to randomly 
cause unexpected or faulty behavior during plan execution.  

For this application, planning goals correspond to prioritized 
science observations for taking images or spectrometer 
measurements. The final plan for each rover is a sequence of 
commands, which typically includes drive operations to different 
locations, specific instrument operations at those locations, and 
communication operations. Science and drive activities require a 
varying amount of power and time depending on parameters such 
as the distance being driven or the science operation being 
performed. Science activities also require different amounts of 
memory for storing gathered data. A number of different resource 
and state constraints are modeled. Each rover has a limited 
amount of available power and memory onboard. There is a 
limited time window (or horizon) each day within which activities 
can be scheduled. Each rover must also perform a communication 
activity each day within certain time constraints. Individual rover 
planners are aware of all of these constraints. The central planner 
is primarily aware of science operations and their related 
constraints. Rover planners also receive a number of state and 
resource updates from the underlying rover control system. These 
updates include current status on power and memory available, 
rover estimated position, and the success or failure of executed 
drive, science, and communication activities.  

3.2 Distributed Communication 

As shown in Figure 2, several pieces of information are 
communicated between the different planners. First, the central 
planner sends new goal assignments to the individual rovers. 
Second, the individual rover planners broadcast information on 
their goal execution status to other rover planners as well as the 
central planner. These status updates relay information such as 
whether a rover can no longer achieve a particular goal (and thus 
is releasing it back to the central planner) and what time the goal 
is scheduled to occur. As mentioned previously, if a rover has 
shed a goal, the central planner can attempt to reassign it. Each 
rover planner uses information about the goals that have been 
assigned to other rovers to evaluate the quality of its own current 
plan and chosen goal set. Our plan optimization approach uses 
this information and is explained in more detail in the next 
section.  

To provide communication between planners, we have adopted 
the Shared Activity Coordination (SHAC) framework [4], which 
provides generic capabilities for continually coordinating multiple 
agents and for rapidly designing and implementing coordination 
protocols to govern the communication process. Information on 
goals is communicated between planners using SHAC’s shared 
activity model, which captures the information that multiple 
agents must share, including control mechanisms for changing 
that information. For MISUS, SHAC enables goal parameter 
information, such as duration, start time, target position, and 
memory required, to be shared among planners. SHAC 
coordination protocols are also used to signal the central planner 
when goals have been shed by a particular rover and thus can be 
re-assigned to a new rover.  

Other communication constraints can also be represented in 
SHAC. Currently in MISUS, goal information is communicated 
between planners as soon as available. However, if 
communication was more restrictive, the system could easily be 
modified to only communicate information during certain time 

windows. The architecture is designed to allow planning and 
execution to proceed whether or not current data can always be 
broadcast.  

 
4. INTERDEPENDENT PLANNING GOALS 

A unique feature of our system is its ability to represent and 
reason about interdependent planning goals. A limitation of most 
planning techniques is that they define relationships between 
input goals in a simple, static manner, which cannot be easily 
adjusted for different problem situations. In many domains, goals 
can be related in complex and varying ways that are best 
represented through utility metrics. These metrics, however, 
cannot always be included as part of a standard domain definition, 
since they are often dependent on current data or state and can 
vary widely from problem to problem.  

Many planning systems allow you to define utility information 
that represents an overall plan quality or score. For examples, 
goals may be assigned priorities that help a planner decide what 
goals to try to achieve first. Other general metrics may also be 
defined, such as minimizing makespan, avoiding missed deadline 
costs, or minimizing the usage of a particular resource [12, 6, 10]. 
Most planning systems also allow you to define static 
dependencies between goals. For instance, two goals could be 
related in a domain model, through the decomposition of a parent 
goal, or through pre- or post-conditions. However, in all these 
approaches, goal relationships and utility metrics are pre-defined 
in the domain description or an objective function and typically 
remain constant between problem instances. Furthermore, it is 
difficult to define utility metrics that involve specific goal 
instances as opposed to general quality concepts that apply to a 
certain class of goals (e.g., increasing the number of orders filled). 
No current planning systems enable dynamic dependencies among 
goals, i.e., dependencies that significantly vary from problem to 
problem and thus must be defined as part of the problem 
specification instead of in the original domain description or 
model. When planning for rover missions, goals are often dictated 
by science data that has just been collected and/or what new 
science opportunities are available. Furthermore, there are many 
situations where the value of a science goal will be changed if 
other related science goals can be achieved. For instance, 
collecting images of a particular rock from different angles and 
distances often increases the value of all images taken of that rock 
since a better overall analysis of the rock can be performed.   

The MISUS distributed planning system provides a method for 
handling interdependent planning goals while performing plan 
optimization. In this approach, interdependencies between goals 
can be formulated dynamically and provided to the planning 
system as part of the goal input. The central planner and all local 
rover planners can then reason about these dependencies and 
incorporate them into the objective function they use to rate plan 
quality and direct their search process. To implement our 
approach, we have extended the base optimization framework 
already available in CASPER. We have also tested our approach 
on a series of problems based on the previously described 
scenario of rovers performing a rock distribution survey of the 
surrounding terrain area.  
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4.1 Interdependent Goal Representation and 
Objective Function 

To represent a goal’s value, we have extended a typical utility 
representation where goals can have individual rewards 
representing their importance, so that complex interdependencies 
and their relevant utilities can be represented and used by a 
planning system. Furthermore these interdependencies and utility 
values can change between problem specifications without 
requiring any changes to the planning domain model. In our 
representation a list of goals (g1, g2, …, gn) and goal combinations 
(c1, c2, …, cm) are provided to the planning system, where each 
goal combination ci consists of a tuple of goals <gi, gj, …, gk>. 
For each goal and for each goal combination there is an associated 
weight indicating the value that will be added to the plan if the 
plan includes those goals. This representation allows us to express 
singleton goal values, that is a goal whose contribution to the plan 
does not change as other goals are added, and any n-ary goal 
relationship to indicate the value that combination of goals adds.  

We currently use a simple objective function to calculate the plan 
quality with respect to its achieved goals.  Let G be the set of 
goals that occur in the plan. The value of plan P is then give by 
Equation 1. This function sums up the values of all goals that 
occur in the plan along with the weight for each goal 
combination, where all named goals appear in the plan. 

 
4.2 Optimization Approach 
To use the above objective function, we have also provided an 
improvement heuristic that can suggest what changes CASPER 
should make to the plan to increase the score. To create and 
optimize a plan we use a random hill-climbing search with restart. 
First, a plan is created that achieves any mandatory goals or 
activities that must be added to the plan. We then perform a series 
of optimization steps where each step consists of i iterations. At 
each iteration, if there are no conflicts in the plan, we use an 
improvement heuristic to suggest the next goal to add. If there are 
conflicts, we perform an iteration of repair. Whenever we have a 
conflict-free plan, if its score is the best seen so far, we record its 
point in the search space and begin the next optimization step. 
This approach protects against the possibility of adding a goal to 
the plan that cannot be solved. 

To select the next goal to add during this process, we use a 
simple, greedy improvement heuristic that considers all goals and 
picks the one that would lead to the highest score if it were added 
to the plan.  We also include an element of randomness to avoid 
repeatedly adding an unachievable goal. With probability 1 – ε we 
add the highest scoring goal, otherwise a goal is picked at 
random.  

5. EVALUATION  

5.1 Testing Methodology 

We performed a series of experiments to evaluate whether or not 
explicitly taking into account goal interdependences during 
optimization would significantly improve the quality of the 
overall team plan. We expected to see some improvement over a 

system that did not use goal interdependences, but were not sure 
if the improvement in quality would be worth a potential increase 
in time to produce the plans. For these tests we compared our 
distributed version of CASPER with support for interdependent 
goals (which we will refer to as CASPER+IDGS) to two other 
distributed versions of CASPER: CASPER+Random and 
CASPER+ SimpleReward. All three versions used the 
randomized hill-climbing algorithm described in the previous 
section. The only difference is in how each of the three selects the 
next goal to add to the plan. CASPER+IDGS uses the objective 
function from Equation 1 to pick the next goal. 
CASPER+Random simply selects a goal at random without 
considering rewards.  Finally, CASPER+ SimpleReward uses an 
objective function that looks at individual goal rewards without 
considering goal interdependencies. 

We ran each distributed system on a set of generated problems 
from the previously explained Mars exploration domain. For these 
particular tests, we did not use the data analysis component to 
generate goals, but instead used a random problem generator to 
produce problems of varying degrees of difficulty. In particular, 
problems varied in the number and location of the science goals, 
as well as the size of the terrain area to be explored. Table 1 
shows the types of goals that are given to the planner along with 
the possible rewards for each individual goal. The importance of 
an individual rock is chosen randomly from the range 1-14. Each 
problem specification contains a set of (optgoals to take images 
and spectrometer measurements of particular rocks in the selected 
area. Problems ranged in size from 30 to 90 different goals to 
examine 10 to 30 rocks in the surrounding terrain. The rovers are 
given 2 Martian days to complete these goals. Due to domain 
resource and temporal constraints, most of the generated problems 
are too large to fully complete. Thus the planning system will 
have to take into account the different goal utilities to determine 
which subset of goals to achieve. 

Each problem description also included a randomly generated set 
of goal interdependences, which were based on preferences 
obtained from planetary geologists and represent the type of 
utility values considered by human experts. Table 2 shows the 
goal combinations used for the experiments and the associated 
rewards. To increase the variance among combinations, we used 
two different factors for computing the value for one of the goal 
pairs (pair A and C). A certain percentage of the time the rewards 
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Equation 1: Objective function for calculating plan  

utility when using interdependent goals 

Table 1: Individual Goals and Rewards
 

Goal Reward 
A: Long-Range Image of a Rock 
B: Close-Up Image of a Rock 
C: Close-Up Spectrometer Read  
of a Rock 

Rock + 11 
Rock + 6 
Rock + 1 
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for this pair was significantly increased. Finally, for a given rock, 
each of the three goal combinations is removed with probability 
0.5. 

We generated a set of 30 problems and ran each version of 
distributed CASPER on each problem 5 times. The systems were 
run on a Linux 3.06GHz P4 workstation with 1GB of RAM. To 
run tests in a reasonable time frame, we ran each planner in a 
batch mode where the planners were synchronized after each 
optimization session. This allows planners to still periodically 
communicate status information and for the central planner to re-
assign goals to another rover when shed by one rover.  
 
5.2 Results 

At the end of each optimization step we recorded the current plan 
score based on the objective function from Equation 1. We also 
recorded several other statistics, including the number of seconds 
spent during each optimization step, the current number of goals 
in the plan, and the cumulative traverse distance required by the 
current plan. 

Figures 3-5 present the results from these runs. Figure 3 shows the 
objective function scores and that CASPER+IDGS outscores both 
the other approaches. In fact, CASPER+IDGS shows a 
statistically significant improvement over both approaches at all 
but the first few optimization steps. Figure 4 shows that for the 
majority of data points, CASPER+IDGS added fewer goals to the 
plan. This factor is important because it shows that a higher score 
can be achieved using fewer goals. Note, that none of the planners 

were able to achieve all the goals and in such cases it becomes 
particularly important to achieve the higher quality subset. 
Another gathered statistic (not shown in a figure) was the average 
traverse distance required by each plan. These results showed that 
the plans created by CASPER+IDGS required the rovers to travel 
up to 15% shorter distances than the other planners, while still 
achieving a higher quality plan. 

It is also important to note that CASPER+IDGS’s biggest 
improvements in performance occur in the early optimization 
steps. Thus, if the planner is under tight time constraints, using 
CASPER+IDGS will allow the planning system to find a much 
higher quality set of goals. This feature is especially important in 
real-world problems where planning time can be tightly bounded.  
Figure 5 shows that reasoning about interdependent goal values 
does not require additional planning time. This benefit is 
important when a planner is given more goals than it can achieve 
as well as when the planner is under time constraints and may not 
have enough time to plan for all its goals.  

6. RELATED WORK 

Many cooperative robotic systems use reactive techniques to 
coordinate robot behavior [9, 8]. These systems have been shown 
to exhibit low-level cooperative behavior in both known and 
noisy environments. However, they have not been shown useful 
for mission planning where a set of high-level goals must be 
achieved in a predictable manner and while obeying a series of 
resource and state constraints. 

Some systems have used planning techniques to determine robot 
behavior. One example is FIRE [5], which coordinates actions of 
multiple robots at several layers of abstraction. The top planning 
layer uses a market-based strategy to distribute tasks among 
robots, where robot travel time is the primary measure of cost. 
Another example is GRAMMPS [2], which has a central planner 
and a low-level planner on each robot, however does not consider 
multiple resources or exogeneous events. Our design has some 
similarities to teamwork approaches [11], where the central 
planner is the leader and rover planners are followers, however, in 

 
   Figure 3: Objective Function Score                                               Figure 4: Number of Goals Achieved 

Table 2: Goal Interdependencies and Rewards 
 

Goal Combination Reward 
<Goal A, Goal B> 
<Goal A, Goal C> 
 
<Goal B, Goal C> 

(Rew(A) + Rew(B))*1.75 
(Rew(A) + Rew(C))*2.25, 90% 
(Rew(A) + Rew(C))*10.0, 10% 
(Rew(B) + Rew(C))*1.25 
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MISUS each team member can fully re-plan based on current goal 
and resource knowledge. Furthermore, none of these techniques 
consider information on interdependent goals or are integrated 
with a data analysis system to provide new goals. 

Work in planning optimization has used utility models to improve 
on static quality measures, such as missed deadlines or 
minimizing resource usage [12, 6, 10]. Our approach, however, 
allows for the representation of utility for specific goal 
combinations that can change from problem to problem. The goal 
combinations used in this paper could be encoded into a Markov 
Decision Process [1], however MDPs have yet to be demonstrated 
on problems of significant size in domains with time and resource 
constraints. 

Previous work in decision analysis has looked at decision making 
with multiple objectives [7] enabling one to develop preferential 
structures over decision outcomes.  Our representation of goal 
interdependences is a simple type of preference structure that 
allows the planner to select among alternate actions. In the future, 
we plan to incorporate more results from decision analysis to 
support more complex goal relations and uncertainty about goal 
pay-off. 

7. CONCLUSIONS 

This paper presents an approach for coordinating multiple rovers 
in achieving planetary science goals. The system integrates 
techniques from planning and scheduling with machine learning 
to autonomously analyze, request and obtain new science data. 
An important feature of our system is its ability to represent and 
reason about interdependent science goals. We have shown how 
this information is used in our distributed planning system and 
presented a set of experimental results that show how this 
approach can significantly improve plan quality. 

In future work, we plan to apply the MISUS system to other areas 
of planetary geology and exploration. In particular, we would like 
to expand the system to cover the testing of particular hypotheses 
or the handling of more closely coordinated tasks such as science 
observations that require multiple rovers to execute. We also plan 

to consider more complex goal interdependencies. Finally, though 
currently this system is operated only in simulation, we intend to 
ultimately test its capabilities using real rovers examining terrain. 
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