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Abstract

Planning for unknown environments presents a number of
technical challenges. The planner must ensure robustness to
unknown phenomena and manage unpredictable variation in
execution, all while operating in a capacity that maximizes
its objective. Productivity in the face of these challenges re-
quires an integrated approach to planning and execution that
is capable of accomplishing goals, reacting to variation, and
maximizing overall utility. We examine this problem in the
context of a Europa Lander concept mission. We model the
problem as a hierarchical task network, framing it as a utility
maximization problem constrained on a depletable energy re-
source. We propose a planning and execution framework that
responds to feedback using three techniques: (1) flexible exe-
cution, (2) periodic replanning, and (3) online model param-
eter and utility updates. The efficacy of each of these tech-
niques is examined through simulation of a Europa Lander
concept mission, showing higher utility achievement com-
pared to baseline approaches. We demonstrate that an inte-
grated approach to planning and execution that is grounded
in replanning, utility maximization, and model parameter
updates will be an enabling technology for future tightly-
constrained planetary surface missions.

Introduction

When integrating Al planning into robotic applications,
planners are consistently challenged by variation in execu-
tion and uncertainty in the quality of our environment mod-
els. In space-based applications, this is especially challeng-
ing because the environment is largely unknown, reducing
the quality of our a priori models of the world. To address
these problems, we describe an integrated approach to plan-
ning and execution in an unknown, unpredictable environ-
ment. We use a hierarchical task network (HTN) that defines
activities and their associated dependencies, and we create
plans using this mission representation. To drive planning
goals, we assign utility to tasks that complete those goals,
and generate a plan that maximizes utility while obeying
each task’s constraints. At execution time, we use flexible
execution and re-planning to react to uncertainty and varia-
tion, and to compensate for an approximate world model.
Finally, we accept model parameter updates (such as ex-
pected task energy usage and estimated task utility) during

(©2020. California Institute of Technology. Government sponsor-
ship acknowledged.

execution time to incorporate execution feedback and gained
knowledge and use these updated models to optimize plan
quality.

We examine the problem in the context of a proposed mis-
sion concept to perform in-situ analysis of samples from the
surface of the Jovian moon Europa (Hand 2017). Unlike
prior NASA missions, a priori domain knowledge is severely
limited and uncertain, and communication with Earth is lim-
ited by long blackout periods (about 42 hours out of every 84
hours). Consequently, a successful mission requires a plan-
ning and execution framework that is highly efficient ! , ro-
bust to unprecedented levels of uncertainty, and still capa-
ble of maximizing its overall utility. On the other hand, the
Europa Lander concept has a fairly rigid definition of what
actions the lander must perform in order to produce util-
ity. Our planning algorithm leverages this domain-specific
knowledge by making use of a hierarchical task network and
using heuristic-guided search to examine various task com-
binations to maximize utility. The ultimate goal for a Europa
Lander would be to analyze surface material and communi-
cate the resulting data products back to Earth. To reward ac-
complishment of these goals, we assign utility to tasks such
as sample excavation and seismographic data collection, but
do not receive this utility until the lander communicates the
data down to Earth. In the HTN framework, this means that
tasks in a hierarchy produce utility only if the full hierarchy
is executed.

We integrate planning and execution in order to better re-
act to environmental variation, moving away from fixed time
and energy budgets to generate less conservative, more suc-
cessful plans. To do so, we use MEXEC, an integrated plan-
ner and executive first built for NASA’s Europa Clipper mis-
sion (Verma et al. 2017). To account for approximate world
models, our framework replans on a periodic basis to recal-
ibrate its plans with reality. Finally, we integrate a module
that continually estimates task parameters and goal utilities
during execution in response to new information. We update

"The RAD750 processor used by the Mars 2020 rover has
measured performance in the 200-300 MIPS range. In compari-
son, a 2016 Intel Core i7 measured over 300,000 MIPS, or over
1000 times faster. Furthermore, the Mars 2020 onboard scheduler
(Agrawal et al. 2019) is only allocated a portion of the computing
cycles onboard the RAD750 resulting computation several thou-
sand times slower than a typical laptop.



the priors on the relevant model parameters accordingly, and
subsequently replan to produce a more accurate plan. This
further improves plan quality and utility gain.

We present this planning and execution framework in a
simulated Europa-like mission and compare it to three base-
line approaches similar to those used in prior missions: a
static plan (Gaines et al. 2016a), flexible execution with no
replanning, and flexible execution with replanning but with-
out online parameter update (Rabideau and Benowitz 2017).
We explore the value of flexible execution, replanning, and
online model reparameterization, and examine their effect
on utility in these scenarios. We present empirical results of
the efficacy of each technique over the others, and discuss
further techniques and implementations that may continue
to improve on these baselines into the future.

Problem Description

The primary goal of the Europa Lander mission concept is
to excavate and sample the surface, analyze the sampled
material for signs of biosignatures, and communicate that
data back to Earth (Hand 2017). Additionally, there are sec-
ondary objectives to take panoramic imagery of the Europan
surface and collect seismographic data. Lander operations
are generally limited to the accomplishment of these two
overarching goals. This provides significant structure to the
problem, since the concept mission clearly defines the se-
quence of actions required to achieve these goals. Figure 1
displays the strong dependency structure inherent to the Eu-
ropa Lander concept mission. In order to sample, the lander
needs to have excavated a trench; in order to analyze, the
lander needs to have collected a sample; etc.

As a minimum requirement, the lander should excavate
a trench in the Europan surface, collect three samples from
that site, analyze those samples, and return that data to Earth.
The basic requirements of a mission would require only a
single site to be excavated. However, there is value in exca-
vating additional sites, because the material at different sites
may possess different properties. In addition, the lander may
choose to resample the same location, for example, in order
to verify the discovery of a biosignature at that location. In
the baseline mission concept, all three of the lander’s sam-
ples are chosen from the same target. Note that after the first
site is excavated, no further excavations are needed to sam-
ple from that trench; all three sampling activities can share
a single excavation site. After excavation and sample collec-
tion, samples must be transferred into scientific instruments
that analyze the material and produce data products. Then,
for a mission to achieve any actual utility, those data prod-
ucts must be communicated back to Earth. Because com-
munication is difficult and energy intensive, the lander may
choose to compress data lossily if the expected utility of this
action is higher.

In addition to sampling tasks, the lander may engage
in seismographic data collection and period panoramic im-
agery tasks. These are considered lesser goals, with lower
utility associated with their completion. As such, the data
products that these tasks generate are considered to have
lower value. However, these tasks also involve no surface

interaction, and have less uncertainty associated with them
as a result.

It is important to note that utility is only achieved when
data is downlinked back to Earth. This is true for both the
sampling and seismograph/panorama tasks. Some excava-
tion sites or sampling targets may provide more utility than
others if, for example, one of those targets has a positive
biosignature and the other does not. However, regardless of
the quality of the material that the lander samples, no util-
ity is achieved unless that data is communicated. This dy-
namic means that while potential utility is generated during
the sampling and analysis phases, it is only realized by com-
pleting relevant communication tasks.

The Europa Lander mission concept is also constrained
by a finite battery that cannot be recharged. Battery life is
a depletable resource, and the lander must use its energy as
efficiently as possible. Each task saps energy from the bat-
tery, and our algorithm must plan accordingly to maximize
utility in face of this constraint. In addition to this challenge,
the surface characteristics of Europa are uncertain, and any
prior mission model that is generated before landing is sure
to have inaccuracies. In particular, the energy consumption
of the excavation and sample collection tasks is largely un-
known. There is also significant variation in the utility of
any given sample, since the value of sampling a given target
on Europa depends on whether the material is scientifically
interesting, e.g. whether a biosignature is present.

Approach
Problem model

We model this problem using a hierarchical task network
(HTN) to compile the domain-specific knowledge of the de-
pendency structure into the task network. HTNs have been
used successfully in industrial and other real-world applica-
tions to improve the tractability of planning problems in sys-
tems such as SHOP2 (Nau et al. 2003) and SHOP3 (Gold-
man and Kuter 2019). In an HTN, hierarchical tasks are de-
composed to a set of subtasks. We refer to the higher-level
tasks as “parent tasks”, and refer to their children as “sub-
tasks”. Parent tasks may decompose into a number of differ-
ent sets of subtasks; we refer to each of these sets as a po-
tential “decomposition” of that parent task. Finally, we refer
to tasks with no decompositions as “primitive tasks”. These
primitive tasks represent tasks that the lander can be directly
commanded to perform.

Decompositions provide a number of benefits to our plan-
ning approach, significantly reducing plan search space. In
addition, we can treat all subtasks of a parent task as a sin-
gular block for planning purposes. The lander only achieves
utility after completing an entire sequence of sample, ana-
lyze, communicate. Decompositions allow us to treat “sam-
ple, analyze, communicate” as a single unit and schedule
them accordingly. Thus, our model intrinsically biases the
lander against planning to sample without a corresponding
communication task. This may not always be optimal, if for
example, excavation and sampling is cheap and communica-
tion is very expensive. However, for our problem, energy use
is dominated by the excavation and sampling tasks, and the



Post Landing
Initialization
And “I'm alive”

-—'

l .

Select Initial
excavation location

Initiate Seis/Geo —— P>

Commission

Communicate
Initial Data

Periodic
Communication
Continuing

Seis/Geo —>

i Process & Analyze A
Sample Location Collect Y’ s E—— Communicate Communicate until
Select
Death
Sample Location Collect Process & Analyze R Communicate
Select
Sampslzllitt:atlon Collect - Process & Analyze , Communicate

I

Figure 1: A task network for the Europa Lander mission concept. The diagram represents a potential execution trace of the

mission that would fulfill baseline requirements.
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Figure 2: Two possible decompositions of a single parent
“Sample Site 1. In the left decomposition, the lander ex-
cavates the site, samples target A, and communicates raw
data. In the right decomposition, the lander skips excava-
tion, samples site B, and communicates compressed data.
Both achieve the same goal of sampling site 1.

decomposition paradigm effectively encodes this domain-
specific knowledge into our planning routine.

There are three main parent task types in our mission
model. The first is a Preamble, which consists of post-
landing initialization and other one-time initialization tasks.
Second are sampling tasks. These consist of excavation,
sample collection, transfer, analysis, and communication
tasks. Excavation can take place at one of two excavation
sites, and may be skipped if an excavation has previously

occurred for the specified site. For collection tasks, the lan-
der may choose between four collection targets: two for each
excavation site. It may revisit a target that has already been
sampled, still obtaining utility for a repeat sample. Then,
for communication tasks, the lander may choose to either
communicate raw data or compressed data. Finally, there
are Seismograph/Panorama tasks, which consist of seismo-
graphic data collection, panoramic image collection, and
communication of that data.

In our problem, we assign utility primarily to two activi-
ties: sampling and communication. Both of these task mod-
els are assigned a numeric value representing their utility,
which can be updated online by the planning and execution
system if knowledge at execution time alters the expected
utility of a given action. Utility for these tasks is achieved
only after their full decomposition has been successfully ex-
ecuted. Thus, for sampling utility to be achieved, a corre-
sponding communication step must successfully complete.

We assign utility to sampling tasks in order to differenti-
ate between sites that may be more or less interesting, de-
pending on the scientific value of the site. Communication
utility is larger, and remains constant. For the communica-
tion tasks, we assign higher utility and cost to tasks that
communicate raw data, compared to those that communicate
compressed data. This simulates a Pareto optimal “menu”
of communication options. The combination of sampling
and communication utilities represents the overall utility
of a parent sampling task. Seismograph/panorama utility is
driven solely by communication utility.

Planning algorithm

Our planning algorithm uses the HTN model of the Europa
Lander problem to build a search graph, with nodes hold-
ing partial plans and edges holding task decompositions.



We perform a heuristic-guided branch and bound search on
this graph and select the best plan explored. The algorithm
consists of four phases: pre-processing, initialization, explo-
ration, and plan selection. The planning algorithm is de-
scribed below, and provided in pseudocode in Algorithm 1.

First, a pre-processing step flattens task decompositions
into a single layer, such that parent tasks decompose into
a chain consisting only of primitive, non-hierarchical sub-
tasks. This allows us to assign utility and energy cost directly
to each decomposition, because its breakdown into disparate
subtasks has already been performed. Then, each decompo-
sition’s utility is the sum of each of its subtasks’ utility. The
same is true for energy cost. This step is performed once per
domain model, offline. Preprocessing has exponential run-
time in the worst case, and future work may require addi-
tional search in decomposing tasks as well as planning them.

Our search graph consists of nodes containing partial
plans and their associated energy cost and utility. A node’s
cost is simply the sum of cost of each task scheduled in
the node’s plan; the same goes for utility, though future
work may take joint utility into account. In the initializa-
tion phase, the algorithm creates a single node containing an
empty plan, with utility and cost 0. Then, it iterates through
all task decompositions created in the pre-processing phase
in order to generate the set of edges that may be followed
from a given node. To finish the initialization phase, the al-
gorithm populates an exploration queue with (node, edge)
pairs, pairing the singular initial node with all edges in the
collection. At the end of the initialization phase, then, the
exploration queue consists of all task decompositions paired
with the empty plan.

In the exploration phase, the planner pops the top of the
exploration queue to get (P, T'), where P is a partial plan,
and T is the list of primitive subtasks comprising a task de-
composition. It then attempts to schedule all tasks in 7" given
the state of the world produced by following the plan P. If
the tasks cannot be scheduled, it moves on to the next ex-
ploration queue item. If the tasks can be scheduled, i.e. their
preconditions are met and their impacts do not produce any
conflicts, a new graph node is created. This node contains a
new plan P’, the resulting plan after adding the tasks in T to
P.

After creating this plan node, the planner iterates through
the edge collection again, pairing the new plan with all pos-
sible tasks. In this iteration, it ignores tasks that have al-
ready been scheduled in the plan, so as to avoid duplicates.
The algorithm also filters these pairs to ensure that the to-
tal cost P.cost 4+ T'.cost < M, where M is the max energy
cost allowed (equal to the current battery charge of the lan-
der). This bounds our search, and we further bound the al-
gorithm’s search by limiting the number of exploration can-
didates examined. Note however that this bound maintains
optimality if we allow the algorithm to expand the entire
space. After filtering, these pairs are added to the exploration
queue, and the next queue item is examined. The exploration
queue is a priority queue, with (plan, decomposition) pairs
ordered by a heuristic value to improve search results. Given
a plan, decomposition pair (P,T"), we assign the heuristic

value h(P,T) = P.utility + %ﬁfﬁy Finally, in the plan

selection phase, the algorithm iterates through all candidate
plan nodes, selecting the plan with the highest utility. Ties
are broken according to energy cost, where a lower energy
cost is preferred.

Algorithm 1: Europa Lander Planning

Input: A list of tasks to schedule 7'
Output: A plan of scheduled tasks P
/* initialize exploration queue */
node_collection = [];
add (plan=[], utility=0, cost=0) to node_collection;
edge_collection = [];
for d in task.decompositions do
new_edge = (d, d.utility, d.cost);
add new_edge to edge_collection;
end
explore_q = [];
for edge in edge_collection do
| add (node_collection[0], edge) to explore_g;
end
/* search exploration queue */
num_explored = 0;
while num_explored below exploration bound do
num_explored++;
plan, decomp = explore_q.get_max();
if decomp tasks can be added to plan then
new_plan = plan + decomp tasks;
for edge in edge_collection do
if edge.task not in new_plan and
new_plan.cost + edge.cost below
max_cost then
| add (new_plan, edge) to explore_g;
end
end

end

end
/* find best plan in node
collection %/
best_plan = null;
for plan in node_collection do
if plan.utility above best_plan.utility then
| best_plan = plan;
end
end
return best_plan;

Execution

Planning and execution are integrated in our approach, in
order to respond to variation and therefore better optimize
overall utility achieved. We use MEXEC for flexible exe-
cution, which allows us to make small plan modifications
to task start times and resource consumption without failing
(Verma et al. 2017). We maintain task models that have im-
pacts on certain resources, e.g. each task has some negative
impact on an energy resource, representing its energy usage.
As is common in robotics, variation during execution time



may prove these models to be incorrect. Thus, during execu-
tion, we update our resource timelines to match the values
measured.

In addition to updating the raw value of modeled re-
sources, we also update task impact models with the infor-
mation gained during execution. This is especially important
in the sampling tasks. There exists significant uncertainty in
our model of interactions with the Europan surface, so we
may discover that collecting a sample is much more difficult
than previously expected. In this case, we rely on updating
our model of the sample collection task to better represent
what has been discovered. By doing so, we are able to re-
plan with a better understanding of the task, thereby creat-
ing plans that are more likely to succeed. In this paper, we
explore only one online parameter update policy, where the
latest energy use value is used to update the task model, i.e.
our prior estimate is ignored after gaining some posterior
knowledge. Future work would explore more sophisticated
policies and their resulting effects on utility achievement.

We also update our utility estimation for certain tasks. Our
task network has a prior estimate on the utility of collecting
surface samples that is uniform across all targets. At execu-
tion time, the information discovered may drastically alter
this estimation. For example, after sample analysis, the lan-
der may discover a biosignature at target A, but nothing at
target B. Our framework would then update its task models
accordingly, rewarding sample collection tasks at target A
with much higher utility than tasks at target B. Online utility
update thus allows us to redefine our goals and the value of
each goal according to the information obtained at execution
time. We again restrict our focus to a single policy of online
utility update, using the latest value to overwrite any prior
estimate.

Tying all of this together is periodic replanning on a fixed
cadence. This allows us make use of online state updates,
model updates, and utility reassignments during execution
time, thereby creating plans that achieve higher overall util-
ity. Our framework measures the value of each resource be-
ing modeled, and assigns that value to the given resource
in the planning model. Then, when replanning, the planner
uses the actual, measured value of the state, rather than the
previous predicted value. This allows us to update our goals
according to what is realistically possible given the current
state measurements of the system. In future work, we may
replan in response to events such as the detection of sig-
nificant error in resource modeling (Chi et al. 2018). This
would minimize replanning, such that it would occur only
when necessary.

Results

We examine the performance of four potential planning and
execution frameworks in a simulated Europa Lander prob-
lem. As a baseline, we examine the performance of a static
plan, executed with fixed time points and energy impacts.
We refer to this strategy as “none”, as it uses none of the
flexible execution techniques we describe. While this strat-
egy is extremely basic, it is also the baseline for many
NASA missions, including the Curiosity rover (Gaines et al.
2016a)(Gaines et al. 2016b). With this strategy, we generate

a static plan and attempt to execute it, without any flexibil-
ity. Because we lack flexibility, the static plan must contain
margin such that tasks are unlikely to overrun their allotted
resource budgets. If any overruns do occur, we terminate the
execution of the plan.

We refer to the second strategy as “flexible”. With
this strategy, we allow flexible execution of a plan using
MEXEC, but do not replan during execution. Because ex-
ecution is flexible, we can reduce the amount of margin in
our task models, and rely on our executive to handle resource
overruns accordingly. In a real application, this would be
analogous to placing an executive on a spacecraft, but only
allowing it to run a plan generated on the ground.

T T T
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Figure 3: Final utility achieved by four different planning
and execution strategies applied to simulated Europa Lander
scenarios.

The third strategy is “replan”, where we allow for replan-
ning during execution, but do not perform any model pa-
rameter or utility updates. At a periodic cadence, we run
the planning algorithm using updated resource values, but
we do not incorporate any information gained about task
model parameters or utility. This baseline is comparable to
expected operations on the Mars 2020 mission (Rabideau
and Benowitz 2017).

Finally, the “model_update” strategy incorporates all tech-
niques described in the approach, executing plans flexibly,
replanning on a regular cadence, and updating task model
parameters and goal utilities online. Specifically, we esti-
mate and update parameters for the sample collection task.
This task is particularly important because it uses significant
energy and is repeated many times in the plan. In addition,
as a task that interacts with the Europan surface, our model
of the task is likely to be extremely uncertain.

To evaluate the efficacy of these approaches, we simulate
execution on a Europa Lander problem. In this simulation,
we vary the energy usage of each task, drawing from a nor-
mal distribution centered around the prior estimate in the
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Figure 5: Sample high-level plans for the replan and
model_update planning/execution strategies.

input task network. In addition to this variation in energy,
we vary the utility of different sampling targets. We draw
this value from a high-variance normal distribution, again
centered around the prior estimate in the task network. Fi-
nally, to simulate uncertainty in our model, for the sample
collection task, we draw energy use from a normal distri-
bution centered around a mean that does not match the task
network input. Instead, the mean is drawn from another nor-
mal distribution, centered around the input. This means that
the energy distribution expected in the world model may not

match the true distribution.

The results of our experiment are shown in Figure 3.
Each strategy was simulated for 50 runs, recording the aver-
age utility achieved by the execution trace. We find that the
“none” strategy’s static plan is severely limited by the mar-
gin required to ensure that the plan can be executed without
resource overruns. This margin is two standard deviations
above mean, and limits our plan to only sampling a single
time. Even with this margin, we find that resource overruns
still occur, which result in no utility achieved. The static ap-
proach achieves a median utility of 1585 and mean of 1325.

Allowing flexible execution with the “flexible” strategy
improves this significantly, bumping median utility gain to
3911, and mean utility to 4195. This benefit comes primar-
ily in the removal of the margins. With an onboard execu-
tive, our plans can expand to the full set of 3 samples, which
greatly increases the ceiling for our utility gain. Figure 4
contrasts the plans of the “none” and “flexible” strategies
at a high level. These plans were selected from execution
traces of the experiment. While flexible execution is very
valuable, because we do not replan, we find that the utility
achieved by this strategy varies widely. Plans are fairly brit-
tle to unexpected energy loss, often resulting in missing the
final communication step in the plan. This proves disastrous
for utility gain, because the work required to generate the
final data product is essentially wasted. Thus, we see a wide
spread of overall utility in this strategy, with two main clus-
ters: one for traces where all three samples are successful,
and one for traces where one sample fails.

With the “replan” strategy, we allow replanning, which
significantly reduces the brittleness of our plans to variation.
We find that this reduces the variance of utility achieved,
but does not significantly affect the overall utility gained
(median 4185, mean 4027). Figure 5 shows a sample plan
with this strategy. Because we react to variation in energy,
the planning algorithm begins to favor compressed data as a
way to save on energy while still achieving sampling goals.
However, this also cuts down on potential utility. Because
the flexible strategy is so optimistic, it is bimodal in utility
gain, either achieving close to optimal, or falling far short.
The replan strategy tends toward a middle path, with a lower
variance of moderate utility plans. This variance reduction
is useful for the Europa Lander problem, since the cost of
failure is significant.

Finally, the “model_update” strategy results in a median
utility gain of 4372 and mean of 4327. The most significant
difference in the full strategy is the online re-weighting and
re-parameterization of different sampling tasks. Depending
on what is discovered at a given sample target, we update
the utility of the sampling action corresponding to that tar-
get. This motivates the lander to sample in other locations if
a particular target is found to be less valuable or more costly
than expected. Because the planner can take advantage of
this newfound knowledge, it is able to harvest greater utility
from sample targets. In our sample plan, we find that this
case occurs in practice: After discovering that sampling tar-
get A is less interesting or more difficult than originally pre-
dicted, the lander chooses to swap targets to target B. It is
thus able to make better use of energy and more effectively



harvest utility, compared to methods that do not estimate pa-
rameters online.

Related Work

Decision-theoretic planning is an effective approach to plan-
ning under uncertainty, particularly in robotic domains, as
it provides a formal model for reasoning about problems
in which actions have stochastic outcomes or the agent
has incomplete information about its environment (Iocchi
et al. 2016; Saisubramanian, Zilberstein, and Shenoy 2017;
Zilberstein et al. 2002). The primary objective of decision-
theoretic planning is to produce plans or policies that de-
fine the potential trajectories of actions that the agent may
take which maximizes its expected utility, rather than max-
imizing or guaranteeing goal-reachability (Boutilier, Dean,
and Hanks 1999). A standard approach in decision-theoretic
planning for modeling domains is to use a Markov deci-
sion process (MDP) (Bellman 1957) when the agent knows
the full evaluation of every state at each timestep, or a par-
tially observable Markov decision process (POMDP) (Spaan
2012) where this holds only for a subset of the variables that
define the statesapce.

However, several issues in spacecraft or rover operations
complicate the use of said decision making models. First,
these models traditionally do not support durative or concur-
rent actions, but rather assume that all actions are instanta-
neous and fully sequential in nature. Second, although there
have been a number of approaches over the years aimed at
improving the scalability of these approaches (Guestrin et
al. 2003; Wray, Witwicki, and Zilberstein 2017; Yoon, Fern,
and Givan 2007), most algorithms that solve MDPs produce
policies that account for all contingencies and provide ac-
tions for all states in the domain. It has been shown that
solving an MDP completely is P-complete in the size of
the statespace, and solving a POMDP PSPACE-complete,
but the size of the state space in these models is itself expo-
nential in the variables that represent it (Littman, Dean, and
Kaelbling 1995; Papadimitriou and Tsitsiklis 1987). This
computational burden is generally impractical or impossi-
ble in spacecraft and rover operations where computational
power is (often severely) limited, and more so in our prob-
lem where the battery is non-rechargeable and the domain
model is expected to be modified repeatedly throughout the
agent’s operation requiring frequent replanning. Addition-
ally, the critical nature of these missions frequently man-
dates a level of interpretability for human operators in the
schedules or plans generated for validation and simulation
purposes that is not always afforded by the complex pro-
cesses used by the solvers to produce their solution.

Search-based algorithms have been a popular alternative
to these approaches for a number of years as they (1) do
not require that the full state space is evaluated to pro-
duce a solution (Hansen and Zilberstein 2001), (2) are of-
ten anytime algorithms that can return a solution at any
point during runtime (Zilberstein 1996), and (3) can easily
leverage heuristics to reduce the computational burden while
still achieving high performance (Bonet and Geffner 2001;
Hoffmann and Nebel 2001; Korf 1990). In our case, all three
of these properties are highly desirable, and influenced our

decision to utilize a heuristic search-based planning algo-
rithm. Additionally, our problem has additional structure in
how tasks are conditioned allowing us to represent our in-
put as a heierarchical task network (HTN). HTNs have been
extensively studied over the last several decades as effi-
cient algorithms for planning in highly structured domains
where expert knowledge can be embedded directly into the
planner (Erol, Hendler, and Nau 1994; Kuter et al. 2009;
Macedo and Cardoso 2004). Our formulation is most similar
to that of SHOP2 (Nau et al. 2003), a forward chaining plan-
ning algorithm with search-control heuristics and determin-
istic outcomes. However, unlike in SHOP2 where at each
iteration of the loop the next task is selected nondeterminsti-
cally from the available tasks, our algorithm does not com-
mit to a task, but rather heuristically explores the search tree
of partial plans, where each node is a partial solution to the
HTN, and then deterministically selects the plan that has the
highest utility. Similar is the idea of combining Monte-Carlo
tree search (MCTS) with HTNs (Ontanén and Buro 2015).
However, this work focuses on improving the efficiency of
MCTS in adversarial domains with enough structure for an
HTN representation to be effective.

Onboard planning and execution are of great interest to
the space domain. The Remote Agent was an architecture
for onboard planning and execution addressing remote au-
tonomous operation with deadlines, resource constraints,
and concurrent activities (Muscettola et al. 1998). The
Remote Agent flew for 48h in 1999 on the Deep Space
One spacecraft using a batch planner that took hours on a
RAD6000 CPU to generate a temporally flexible plan that
was then used by a reactive executive controller (Pell et al.
1997) to provide robust plan execution. The planner used
a refinement search paradigm (J6nsson et al. 2000) to con-
struct a temporally flexible plan but did not consider utility
in plan generation and did not perform continuous replan-
ning due to the computational expense and long planning
time (indeed the replans were scheduled in the prior plan).

The Earth Observing One (EO-1) spacecraft (Chien et al.
2005), which flew for over 12 years from 2004-2017, was
designed specifically to react to dynamic scientific events.
Planning was performed by the CASPER planning soft-
ware (Chien et al. 2000), which took on the order of 10s
of minutes to replan but did not produce temporally flexi-
ble plans. To address this, the onboard executive (SCL) was
able to flexibly interpret the execution of a plan to handle
minor execution runtime variations. The flight and ground
planners (Chien et al. 2010) both used a domain specific
search algorithm that enforced a strict priority model over
observations for limited model of utility. This scenario is
similar to that proposed in this paper, in which the lander
must react to dynamic events and observations in order to
maximize its utility, while still adhering to both mission and
spacecraft constraints. Recently, the Intelligent Payload Ex-
periment (IPEX) also successfully used the CASPER plan-
ning software to achieve its mission objective, further vali-
dating the efficacy of using onboard replanning to handle dy-
namic events and observations during operation even when
the plans are not temporally flexible (Chien et al. 2017).

The M2020 Perseverance rover also plans to fly an on-



board planner (Rabideau and Benowitz 2017) to reduce lost
productivity from following fixed time conservative plans
(Gaines et al. 2016a). Like the planning approach we pro-
pose in this paper, the M2020 planning architecture also re-
lies on rescheduling and flexible execution (Chi et al. 2018),
ground-based compilation (Chi et al. 2019), heuristics (Chi,
Chien, and Agrawal 2020), and very limited handling of
planning contingencies (Agrawal et al. 2019). However,
many characteristics of the M2020 mission are fundamen-
tally different from the mission concept we consider here,
such as the lack of reliable a priori model parameters, the
inability to recharge the battery, and the long communica-
tions blackout time windows incentivizing greater mission
autonomy.

Future Work

In our planning, we consider only one dimension of decision
theory: utility. While we react to uncertainty at execution
time, we do not take this into account during the planning
phase. A more sophisticated planner would explicitly inte-
grate probability into plan generation, maximizing expected
utility rather than assuming resource impacts are constant
and correct. For example, excavation tasks involve risk; task
failure could result in significant energy loss or damage to
the lander. Reasoning about exogenous events such as these
would improve utility achievement by potentially avoiding
such risks, or even seeking them out later in the mission
when failure is less impactful.

In addition, considering depletable resource usage proba-
bilistically would allow optimization of plans to avoid sig-
nificant utility loss if that resource is depleted. For Europa
Lander, energy use is a significant constraint on all tasks. By
reasoning about the probability of running out of energy, we
can improve our plans and avoid these cases when possible.
One simple approach would be to discount a task’s utility ac-
cording to the energy remaining at the time it is scheduled.
This is analogous to the intuitive approach of discounting a
task’s utility according to its distance into the future. Instead
of tying utility discounts to time, however, we tie it to en-
ergy, because this is the most significant task constraint in
the Europa Lander problem.

A more sophisticated approach would examine plan pre-
fixes and choose the one that best balances potential utility
and risk. Here, we would generate a set of plan prefixes that
plan until some fixed time or energy point is reached, e.g. the
start of the next planning cycle. Given this plan prefix, we
would generate plan postfixes given various energy levels,
drawn from a distribution representing the battery remain-
ing. Using a sampling approach, we could arbitrarily refine
our estimate of the plan prefix’s quality given various energy
levels. Then, we would pick the plan prefix that maximizes
the overall expected utility of the entire plan. Adding proba-
bilistic reasoning into our planning algorithm is likely to im-
prove plan quality and thus improve the overall performance
of our planning and execution framework.
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