
Decision-Making in a Robotic Architecture for Autonomy

Tara Estlin, Rich Volpe, Issa Nesnas, Darren Mutz, Forest Fisher,
Barbara Engelhardt, and Steve Chien

 Jet Propulsion Laboratory
California Institute of Technology

{firstname.lastname}@jpl.nasa.gov

Keywords: autonomy, robotics, planning, scheduling,
execution

Abstract

This paper presents an overview of the intelligent
decision-making capabilities of the CLARAty robotic
architecture for autonomy. CLARAty is a two layered
architecture where the top Decision Layer contains
techniques for autonomously creating a plan of robot
commands and the bottom Functional Layer provides
standard robot capabilities that interface to system
hardware. This paper focuses on the Decision Layer
organization and capabilities. Specifically, the
Decision Layer provides a framework for utilizing AI
planning and executive techniques, which provide
onboard, autonomous command generation and re-
planning for planetary rovers. The Decision Layer also
provides a flexible interface to the Functional Layer,
which can be tailored based on user preferences and
domain features. This architecture is currently being
tested on several JPL rovers.

1 Introduction

NASA recently outlined a new Mars Exploration
Program that will have us visit the red planet over six
times in the next two decades. At least four of these
missions will involve rovers or other robotic craft that
will be used to explore the surface of the planet and
perform numerous geological and atmospheric
experiments. In order to collect a high volume of
science data, rovers will require capabilities for long-
range traversal and autonomous operation. A key
aspect of these capabilities is the generation of rover
command sequences. These sequences specify an
ordered list of commands that achieve desired science
goals while ensuring no rover operation or resource
constraints are violated. Sequences must often be
changed or enhanced during execution in response to
changing science goals or unexpected environment
conditions. The model of rover operations used for
the Mars-Pathfinder rover, Sojourner, (and the model
planned for the Mars ’03 twin rovers), is to manually

generate sequences on the ground and when necessary,
perform additional sequence modifications on the
ground based on uploaded data [11]. If something
unexpected happens during sequence execution, such
as an out-of-range sensor reading or a longer than
expected traversal, the rover must be “safed” until
further communication from the ground can provide a
new command sequence. This procedure often causes
hours of lost science time and makes it extremely
difficult to take advantage of unexpected science
opportunities.

To enable autonomous sequencing onboard a rover,
AI researchers have been developing several key
pieces of software that interact to provide a valid and
desirable set of rover commands. Planning and
scheduling systems [3,4,10] input a set of science
goals, the current rover state, and a model of rover
operations to produce a validated sequence of rover
activities. This sequence should achieve as many
science goals as possible, while still obeying resource
and other operation constraints. Executive systems [9,
15] further expand this activity sequence based on
current sensor information into a detailed set of
commands and dispatch these commands to low-level
rover-hardware controllers for execution at the
appropriate time. Planning and scheduling systems
typically focus on goal-driven behavior, which enables
a robotic system to produce a plan of actions based on
a set of high-level goals. Executive systems typically
focus on event-driven behavior, which enables a
robotic system to quickly react to changes in its
environment and modify its actions accordingly.

This paper discusses part of a new robotic
architecture called CLARAty (Coupled Layered
Architecture for Robotic Autonomy) [17], which is
being developed to support autonomous rover
operations at the Jet Propulsion Laboratory. In
particular, we discuss the top layer of the CLARAty
architecture and how it enables the integration of
planning and execution functionality, as well as how it
provides a flexible interface to the spectrum of
functionality built-in to the rover control software, or
“Functional Layer” [13]. This top layer is termed the
“Decision Layer” since its main objective is to decide
what sequence of rover actions should be used to

achieve an input set of goals. Another important
objective of the Decision Layer is to provide a
framework for using different types of planning and
executive systems, and to enable new ways of
combining these capabilities.

The rest of this paper is organized in the following
manner. First, we introduce the CLARAty architecture
and present a brief overview of its two layers. Second,
we discuss the first instantiation of the CLARAty
Decision Layer, and describe the particular AI
planning and executive systems that are being utilized.
Next, we describe the important ways the Decision
Layer interfaces to the Functional Layer. Finally, we
present related work and our conclusions.

2 The CLARAty Architecture

Most mobile robot efforts at the Jet Propulsion
Laboratory (JPL) have concentrated on building
software infrastructure for navigation, manipulation
and control. High-level decision making for these
efforts was typically done using very simple execution
of linear sequences that were tediously created by
ground controllers. However, new missions are
looking at rovers that will require significantly more
onboard autonomous capabilities to support goals such
as long-range traversals, complex science
experiments, and longer mission duration. The
CLARAty robotic architecture for autonomy is being
developed in response to the need for a robotic control
architecture that can support future mission autonomy
requirements at JPL. CLARAty builds on current
work at JPL and in the research fields of robotics and
artificial intelligence.

2.1 Review of Three-Level Architecture

Typical robot and autonomy architectures are
comprised of three levels – Planning, Executive, and
Functional (or Control). These levels are usually
organized by the level of abstraction in which they
operate. The top Planning level constructs high-level
plans utilizing AI planning search techniques. In the
past, these algorithms have typically been
computationally intensive and required a significant
amount of time to respond to new updates or changes.
Domain knowledge for this level is encoded in a
declarative model, where it can easily be utilized by
different search techniques.

The Executive level is responsible for execution of
plans produced by the planning level. The executive
level typically performs further expansion of planned
activities based on current execution context. This
level is also responsible for monitoring activities and
rover conditions as execution proceeds and for
handling exceptions as they arise. This level must
quickly react to changes, so its behavior is usually
more responsive than that of the planning level.
Domain knowledge at the Executive level is typically
represented using procedural representations such as
looping constructs, conditionals, etc.

The Functional level is responsible for low-level
control of the robot. This level typically consists of
real-time control loops that directly command the
rover hardware, and which tightly couple sensors to
actuators.

This three-level approach has been successfully
tested on a number of robotic applications [1, 2, 8, 10]
but has several significant limitations. One problem is
that each level has its own representation and thus
several different models of the robot and its
environment must be created and maintained. This
repetition of information storage is often redundant
and causes additional overhead in maintaining the
system over time. A second problem is that each level
is constrained to work on problems at a certain level of
granularity. The planner works at the highest level, the
executive at a level below that, etc. This setup often
prevents planning or executive techniques from being
used on problems where they would be most
appropriate. A third problem is that this type of
architecture does not account for new research in the
areas of planning and execution that blurs the line
between the two levels and that has significantly
increased the response time of these types of systems.
A proposed solution to these problems is discussed in
a later section describing the CLEaR system.

2.2 CLARAty Two-Layer Architecture

To correct these shortfalls, CLARAty provides an
evolution to a two-tiered architecture, illustrated in
Figure 1. This structure has two major advantages: 1)
enabling each tier to operate at all levels of granularity
(or abstraction) and 2) blending declarative and
procedural techniques for decision making.

Adding a granularity dimension to each layer
allows for the de facto nature of planning horizons in
the Decision Layer and for the explicit representation
of system hierarchies in the bottom Functional Layer.
For the Functional Layer, an object-oriented
decomposition describes the system’s nested
encapsulation of subsystems, and provides basic
capabilities at each level of nesting. For instance, a
command to “move” could be directed at a motor,
appendage, mobile robot, or team of robots. For the
Decision Layer, granularity maps to the timescale of
the activities the Decision Layer can schedule. Due to
the nature of the dynamics of the robot system
controlled by the Functional Layer, there is a strong
correlation between the Functional Layer system
granularity and the timescale granularity of the
Decision Layer. However, each layer represents
activity and other domain knowledge using different
representation formalisms.

The blending of declarative and procedural
techniques in the Decision Layer emerges from the
trend of planning and scheduling systems that have
executive type qualities and vice versa [4, 14, 15].
This merging of techniques has been supported by
algorithm and system advances, as well as faster
processing capabilities. CLARAty embraces this
trend by supporting closely integrated planning and
executive systems. It provides a single database to
store and interface functionality from both these
approaches and enables both declarative and
procedural approaches to be applied at different
granularity levels.

Next, we develop these concepts by providing an
overview of features of the Decision and Functional
Layers, as well as the connectivity between them.

2.3 Decision Layer

The Decision Layer breaks down high-level goals into
a plan of activities that successfully coordinate
Functional Layer capabilities in achieving the goals.
The plan must obey any relevant domain or mission
constraints, such as resource limitations or instrument
operation rules. Specifically, this layer consists of a
hierarchical structure that overlays the Functional
Layer. As shown in Figure 2, the Decision Layer can
be thought of as a triangle that represents the “robot
planning space.” Here, a set of high-level goals is
elaborated into a detailed network of goals and
activities that represent the current plan. Goals that are
elaborated outside of the triangle usually correspond
to higher-level mission goals that are not part of the
planning space for the particular robot being
controlled by CLARAty.

The darker (top) portion of the triangle is the region
of the robot planning space that is handled primarily
through planning functions. The lighter (bottom)
portion of the triangle is the region of the robot
planning space that is handled primarily through
executive functions. The line between these two
regions is considered fuzzy since executive and
planning processes may be tightly coupled and may
even share the same representation.

The bottom fringe of this activity network is where
the Decision Layer interfaces with the Functional
Layer. This interface point is shown by the dashed

SYSTEM

IN
T

E
L

L
IG

E
N

C
E

GRANULARITY

Functional

Executive

Planner
COMMON DATABASE

Figure 1: CLARAty Two-Layer
Architecture

Figure 2: Decision Layer

black line (called “The Line”). During plan execution,
capabilities in the Functional Layer will be called, and
results of these actions are monitored to allow the plan
to be iteratively modified in response to changing
events or conditions. This interface line is flexible
and may be moved up or down depending on how
much control and elaboration the Decision Layer is
responsible for. This floating interface line provides
flexibility in the ways the two layers may be
connected. At one end of the spectrum is a system
with a very capable Decision Layer, and with a
Functional Layer that provides only basic services. At
the other end of the spectrum is a system with a very
limited Decision Layer that relies on a very capable
Functional Layer to execute high-level commands.
This flexibility enables the user and robot domain to
dictate the full capabilities of each layer.

The Decision Layer can also access the Functional
Layer to request current state information and resource
estimations for future planned activities. Though most
three-layer approaches allow the current rover state to
be updated in the top levels, none enable the
Functional Level to provide predictive information for
resources. Instead, this information is usually provided
by simple models at the planning level. However, in
CLARAty, detailed models and predictive engines for
this information are kept in the relevant Functional
Layer components for each resource. These models
are also needed by the Functional Layer for its control
operations. This organization enables more detailed
models to be maintained and encapsulates this
information in one logical place. The Decision Layer
can then query for this predictive information during
plan creation. Examples of resource queries are how
much battery power is required by an arm operation or
how much memory storage is needed to hold data
from a science operation. The Decision Layer can also
request queries from the Functional Layer in different
degrees of resolution. Thus, the level of computation
and detailed analysis performed for a resource
estimate can depend on factors such as the criticality
of the activity using the resource or the amount of
time available for planning.

2.4 Functional Layer

The Functional Layer is responsible for providing
basic robot functionality using a set of generic
components that have predefined behavior. These
components attach to their hardware counterparts
when the Functional Layer is deployed on a real
system. The functionality of components can range
from low-level control of a single motor or sensor to
system level operations such as traversing a rover to a
goal using obstacle avoidance.

The Functional Layer also provides an interface to
all system hardware and its capabilities, including
nested logical groupings and their resultant
capabilities. These capabilities are the interface
through which the Decision Layer uses the robotic
system. Figure 3 shows a very simplified and stylistic
representation of the Functional Layer. Since this
paper focuses on the CLARAty Decision Layer, we
only provide a brief description of the Functional
Layer in this section. For further information on the
CLARAty Functional Layer, please see [13, 17].

Figure 3: Functional Layer

The Functional Layer has a number of important
characteristics. One, it has an object-oriented design
that can be structured to directly match the nested
modularity of the hardware and allows for basic
functionality and state information of the system
components to be encoded and compartmentalized.
Two, all objects contain basic functionality for
themselves that is accessible from within other pieces
of the Functional Layer as well as directly from the
Decision Layer. Three, the state of the system
components is contained in the appropriate Functional
Layer object and is obtained from it by query. Thus,
the Decision Layer can obtain estimates of current
state or predictions of future state, for use in planning
and execution monitoring. Four, the Functional Layer
may utilize local planners that are part of its
subsystems. For instance, path planners and trajectory
planners, can be attached to manipulator and vehicle
objects to provide standard capabilities without regard
to global optimality (which is a Decision Layer
concern). Finally, the Functional Layer is also
intended to interface to rover simulators as well as
actual hardware. The details of this interaction are

hidden from the Decision Layer so that changing
between testing on hardware and simulation is
seamless for the Decision Layer software.

3 Decision Layer Implementation

We are currently developing the first instantiation of
the CLARAty Decision Layer. This section discusses
this implementation and gives an overview of the
particular systems and techniques being utilized.

3. 1 Utilization of CLEaR System

In keeping with CLARAty’s support of integrated
planning and executive functionality, the first
instantiation of CLARAty is utilizing the CLEaR
(Closed-Loop Execution and Recovery) planning and
execution system [6, 7]. CLEaR is a hybrid controller
system that is built on top of the CASPER
(Continuous Activity Scheduling, Planning, Execution
and Re-planning) continuous planner [4] and TDL
(Task Description Language) executive system [15].
CASPER provides a soft-real-time capability for
performing plan generation, execution, monitoring and
re-planning. To increase CASPER’s limited executive
capabilities, CLEaR integrates CASPER with TDL so
that the full spectrum of executive capabilities can be
supported. Past versions of CLEaR have been
demonstrated for Deep Space Network (DSN) antenna
control [6]. It is currently being extended to provide
planning and execution support for planetary rovers.

A main object of the CLEaR system is to provide a
tightly-coupled approach to coordinating goal-driven
and event-driven behavior. Most past approaches have
followed the three-level architecture style of
separating planners and executives. In this framework
each system is treated as a “black box,” has its own
plan representation, and operates at a particular level
of plan granularity. In general, executives provide
event-driven behavior that enables a robotic system to
quickly react to changes in its environment and
modify its command sequence appropriately. Planners
provide goal-driven behavior that enables a robotic
system to accept high-level goals rather than low-level
instructions.

Though separating these capabilities works for some
applications, there are many situations (in robotics and
other domains) where it would be beneficial to have
event-driven capabilities available at a higher activity
granularity. For instance, sometimes a conditional
reaction or looping behavior may be required in a
high-level activity or in an activity scheduled
significantly in the future (where these types of
activities are typically managed by the planner). The
sooner such a behavior is properly reflected in a plan,

the sooner information on relevant state and resource
usage can be propagated and reasoned about.
Furthermore, it would be beneficial to have goal-
driven capabilities available on a shorter time scale.
For example, there may be low-level activities whose
resource usage we want the planner to track and
reason about, even when these activities must be
quickly modified in response to current state
information. If the executive makes a decision about
expanding an activity, the planner could influencing
that decision in an optimal manner by performing a
global-resource analysis on how that expansion affects
the overall plan. Without planning-type capabilities
available on a shorter time scale, many activity
resource and state effects must be handled using a
worst-case approximation that can significantly affect
plan optimality and flexibility during execution.

The CLEaR approach to how planning and
executive behaviors are utilized is shown in Figure 4.
Here, the planner and executive operate on the same
set of activities and timelines and all capabilities are
allowed on both near- and far-term activities. The
shaded activity areas of the figure show where the
planner and executive are active. The executive is
primarily active on a short-term basis but can be used
to refine long-term activities. Similarly, the planner is
primarily active on a long-term basis but can be used
to plan for short-term activities. A separate module in
CLEaR decides what functionality is used on what
activities and synchronizes the two sets of capabilities.

Currently in CLEaR, CASPER and TDL still
maintain separate representations, however plan
databases (which hold the current plan for each
system) are coupled where changes in one database
can be reflected in the other. Thus, if the planner
makes a change to the plan, this change can be
reflected in the executive database, and vice versa.
CLEaR also provides heuristic support for deciding
when a plan conflict should be handled by the planner
(CASPER) vs. the executive (TDL). For instance, if a
rover gets off track during a traversal, both the planner
and executive may react and these reactions need to be
coordinated. A simple heuristic for this situation is to
have the executive react if only the current traversal
activity needs to be re-expanded but the overall
activity can still be completed within a certain window
of the original estimated time. The planner reacts only
if global plan changes are required (e.g., the rover is
so far off track that other plan activities must be re-
arranged).

Future work on CLEaR will tighten this integration.
One future step is to enable TDL procedural
capabilities to be accessed by CASPER during initial
plan generation. This step will enable procedural
constructs, such as loops and conditionals, to be easily
utilized during planning and re-planning. Currently,

these types of constructs are difficult to represent in
CASPER’s declarative representation. Another future
step will be to increase TDL’s knowledge of resource
levels and to have CASPER’s global resource analysis
affect some TDL decisions. (Currently, TDL offers
only limited support for resource management.)
Finally, we plan to fully integrate these systems,
where both planning and executive functionality use a
completely shared representation and operate on one
planning database. This will alleviate the need for two
different domain models and will enable planning and
executive functionality to be easily used at all levels of
activity granularity.

3.2 CASPER Planner

Planning in CLEaR is performed by the CASPER
(Continuous Activity Scheduling, Planning, Execution
and Re-planning) planning system [4]. Based on an
input set of science goals and a rover’s current state,
CASPER generates a sequence of activities that
satisfies the goals while obeying each of the rover’s
resource constraints and operations rules. Plans are
produced by using an “iterative repair” algorithm that
classifies conflicts and resolves them individually by
performing one or more plan modifications. CASPER
also monitors current rover state and the execution
status of rover activities. As this information is
acquired, CASPER updates future-plan projections.
From these updates, new conflicts and/or opportunities
may arise, requiring the planner to re-plan in order to
accommodate the unexpected events. CASPER has
been successfully demonstrated in a number of robotic
domains, including command generation for the
landed operations part of the ST4 mission (which
involved landing a spacecraft on a comet) [4], control

of a DSN antenna ground station [6] and coordination
of distributed operations for multiple rovers [5].

3.3 TDL Executive

Most executive functionality in CLEaR is performed
by the TDL (Task Description Language) executive
system [15]. TDL was designed to perform task-level
control for robotic control and to mediate between a
planner and more low-level rover control software in a
robot architecture. It expands abstract tasks into low-
level commands, executes the commands, monitors
their execution, and handles exceptions. TDL is
implemented as an extension of C++ that simplifies
the development of robot control programs by
including explicit syntactic support for task-level
control capabilities. It utilizes a construct called a
“task tree” to describe the tree structure that is
produced when tasks are broken down into low-level
commands. TDL directly support task decomposition,
fine-grained synchronization of subtasks, execution
monitoring, and exception handling. TDL has been
successfully demonstrated on a number of indoor and
outdoor robots, including the Nomad robot used for
the Antarctica 2000 initiative [12] and the Bullwinkle
RWI robot used for Mars autonomy navigation [16].

4 Current Interface to the
Functional Layer

In the first implementation of CLARAty, the Decision
Layer interfaces with the Functional Layer in several
ways. First, after plans are constructed by using the
CLEaR integration of CASPER and TDL, low-level
commands are relayed to the correct Functional Layer
objects. Currently, TDL is responsible for relaying all

activities

Execution
History

Now

Planning Horizon

time

Plan
Freeze

Executive Domain

Planner Domain

timelines

Exec
Freeze

Figure 4: Domains of Planner and Executive in CLEaR System

commands to the Functional Layer whether or not
they were further expanded by TDL. These commands
are relayed to generic Functional Layer objects that
can break the commands down into more specialized
steps for a particular rover. After a command has been
executed, the Functional Layer returns an execution
status to the Decision Layer reflecting the success or
failure of the command. This status is tracked by TDL
and in the case of failure, TDL can either attempt to
fix the plan itself or signal failure to CASPER so that
re-planning can be invoked.

Second, the Decision Layer queries the Functional
Layer for state and resource information. A query is
for a single time point or for an iterative return of state
over a time interval. For instance, during rover
traverses, the Decision Layer can instruct the
Functional Layer to iteratively (e.g., every second)
return the rover’s estimate of its current position.
Allowing state updates to be done continuously over a
certain time interval cuts down on the number of
queries performed and ensures that states are only
updated when necessary (e.g., rover position is only
updated when the rover is moving). Other state and
resources that are useful to update include power
levels, such as battery, onboard memory capacity, sun
angle, and temperature.

Last, when formulating a plan, the Decision Layer
queries the Functional Layer for resource prediction
estimates associated with particular activities. For
instance, when scheduling an arm movement, the
Decision Layer will query the Functional Layer
manipulator object to determine how much battery and
solar power the arm operation will require. For this
first implementation, resource querying can only be
instigated during planning search. However, future
instantiations of this architecture may utilize this
capability during executive expansions. Resource
queries can also be at different levels of granularity.
For demonstrations this year, two levels of queries
will be performed. A simple resource query for the
amount of power used during traverses will return a
simple scalar value. A more detailed power query for
traverses will return a vector of values. Queries will
also be performed for the memory requirements of
science operations. Results of these queries will be
used by the planner to better estimate the future plan.

Future demonstrations will also highlight the
flexibility of “The Line” between the Decision Layer
and the Functional Layer. In the current
implementation both the Decision Layer and
Functional Layer are responsible for expanding
activities at particular granularity levels. Currently the
Decision Layer expands goals down into activities that
use major rover effectors (e.g., arm, camera, mast) and
predicts the resource usage for such operations. The
Functional Layer then expands these activities into

more detailed steps that handle the low-level control
of these effectors. The Functional Layer also interprets
sensor data and produces estimates that are mapped to
state timelines (e.g., rover position, battery power
availability) maintained by the Decision Layer.

5 Related Work

A number of planning and executive systems have
been successfully used for robotic applications and
have similarities to the CLARAty Decision Layer.
Most of these approaches have utilized some form of
the standard three-level architecture.

The Remote Agent Experiment [10] (RAX) was
flown on the NASA Deep Space One (DS1) mission.
It demonstrated the ability of an AI system to respond
to high-level spacecraft goals by generating and
executing plans onboard the spacecraft. The planner in
RAX takes as input a schedule request and produces a
flexible, temporal schedule for execution by its
executive. Both the planner and executive used
different representations and strictly operated on
different granularity levels. A major limitation to this
approach was that planning was only performed in a
batch fashion. If re-planning was required, the
spacecraft was “safed” until a new plan had been
generated (which could be on the order of hours).

Another approach directed towards rover command
generation utilizes a Contingent Planner/Scheduler
(CPS) that was developed to schedule rover-scientific
operations using a Contingent Rover Language (CRL)
[3]. CRL allows both temporal flexibility and
contingency branches in rover command sequences.
Contingent sequences are produced by the CPS
planner and then are interpreted by an executive,
which executes the final plan by choose sequence
branches based on current rover conditions. In this
approach, only the executive is onboard the rover;
planning is intended to be a ground-based operation.

Other three-tier approaches include Atlantis [9] and
3T [2], which both utilize a deliberative planner and
executive (or sequencing component) on top of a set
of reactive controllers. The LAAS-CNRS lab also
developed a robot control architecture that contains
both a decision and execution level and that balances
planning and reactive capabilities [1].

Other systems have also looked at closely
integrating planning and execution. The CPEF
(Continuous Planning and Execution Framework) [14]
is a similar framework to CLEaR for combining
planning and execution. CPEF attempts to cull out
key aspects of the world to monitor (as is necessary in
general open-world domains). CPEF also uses
iterative repair to fix plan conflicts under the term
“conservative repairs.”

6 Conclusions

This paper discusses how intelligent decision-making
is performed for the CLARAty architecture for robotic
autonomy. Specifically, the top “Decision Layer” of
CLARAty is presented. This layer provides support
for the new trend in planning and executive systems to
closely merge their approaches, which provides more
flexibility in creating robot plans. This layer
interfaces with a “Functional Layer” that provides
robot behaviors and control. The interface between
these two layers is flexible so that different
instantiations of the architecture can use different
levels of Decision Layer and Functional layer
capabilities. The architecture is currently being
applied to several robotic efforts at JPL and is being
directed towards future flight implementations.

7 Acknowledgements

The research described in this paper was carried out
by the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National
Aeronautics and Space Administration.

8 References

[1] R. Alami, R. Chautila, S. Fleury, M. Ghallab, and F.
Ingrand, “An Architecture for Autonomy,” International
Journal of Robotics Research, 17(4) April, 1998.

[2] R. Bonasso, R. Firby, E. Gat, D. Kortenkamp, D. Miller,
and M. Slack, “Experiences with an Architecture for
Intelligent, Reactive Agents,” Journal of Experimental
and Theoretical Artificial Intelligence Research, 9(1),
1997.

[3] J. Bresina, K. Golden, D. Smith, and R. Washington,
“Increased Flexibility and Robustness of Mars Rovers,”
Proceedings of the 1999 International Symposium, on
Artificial Intelligence, Robotics and Automation for
Space, Noordwijk, The Netherlands, June 1999.

[4] S. Chien, R. Knight, A. Stechert, R. Sherwood, and G.
Rabideau, "Using Iterative Repair to Improve Re-
sponsiveness of Planning and Scheduling," Proceedings
of the 5th Intl. Conference on Artificial Intelligence
Planning and Scheduling, Breck-enridge, CO, April
2000.

[5] T. Estlin, A. Gray, T. Mann, G. Rabideau, R. Castano, S.
Chien, and E. Mjolsness. “An Integrated System for
Multi-Rover Scientific Exploration.” In Proceedings of
the Sixteenth National Conference on Artificial
Intelligence, Orlando, FL, July 1999.

[6] F. Fisher, R. Knight, B. Engelhardt, S. Chien, and N.
Alejandre, “A Planning Approach to Monitor and Control
for Deep Space Communications,” Proceedings of the
IEEE Aerospace Conference, Big Sky, Montana, March
2000.

[7] F. Fisher, M. James, L. Paal, and B. Engelhardt "An
Architecture for an Autonomous Ground Station

Controller," Proceedings of the IEEE Aerospace
Conference, Big Sky, MT, March 2001

[8] E. Gat, “On Three-Layer Architectures,” In Artificial
Intelligence and Mobile Robots , Eds., D. Kortenkamp, R.
Bonnaso, and R. Murphy, Boston, MA, 1998.

[9] E. Gat., “ESL: A Language for Supporting Robust Plan
Execution in Embedded Autonomous Agents,”
Proceedings of the Tenth National Conference on
Artificial Intelligence, San Jose, CA, July 1992.

[10] A. Jonsson, P. Morris, N. Muscettola, K. Rajan, and B.
Smith, "Planning in Interplanetary Space: Theory and
Practice," Proceedings of the Fifth International
Conference on Artificial Intelligence Planning Systems,
Breckenridge, CO, April 2000.

[11] A. Mishkin, J. Morrison, T. Nguyen, H. Stone, B.
Cooper, B. Wilcox, "Experiences with Operations and
Autonomy of the Mars Pathfinder Microrover,"
Proceedings of the 1998 IEEE Aerospace Conference,
Aspen, CO, March 1998.

[12] S. Moorehead, R. Simmons, D. Apostolopoulous, and
W. Whitaker, “Autonomous Navigation Field Results of a
Planetary Analog Robot in Antarctica,” Proceedings of
the 1999 International Symposium on Artificial
Intelligence, Robotics and Automation for Space,
Noordwijk, The Netherlands, June 1999.

[13] I. Nesnas, R. Volpe, T. Estlin, H. Das, R. Petras, and D.
Mutz, “Toward Developing Reusable Software
Components for Robotic Applications,” submitted to
International Conference on Intelligent Robots and
Systems,Maui, Hawaii , Nov 2001.

[14] K. Myers. “Towards a framework for continuous
planning and execution.” Proceedings of the AAAI 1998
Fall Symposium on Distributed Continual Planning,
Menlo Park, CA, 1998.

[15] R. Simmons and D. Apfelbaum, “A Task Description
Language for Robot Control,” Proceedings of the
Intelligent Robots and Systems Conference, Vancouver,
CA, October 1998.

[16] S. Singh, R. Simmons, T. Smith, A. Stentz, V. Verma,
A. Yahja and K. Schwehr, “Recent Progress in Local and
Global Traversability for Planetary Rovers,” Proceedings
of the IEEE International Conference on Robotics and
Automation, San Francisco, CA, April 2000.

[17] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, H.
Das, "The CLARAty Architecture for Robotic
Autonomy," Proceedings of the 2001 IEEE Aerospace
Conference, Big Sky, Montana, March 10-17, 2001.

