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ABSTRACT—We describe an evolutionary multi-objective optimization approach to the 
scheduling problem presented by the NASA’s Deep Space Network (DSN). This network 
is the communications system that supports NASA and other space missions from high 
earth orbit to the outer planets. Today the DSN consists of a small number of large 
antennas, but in the future it is expected to incorporate several large arrays of smaller 
antennas that can be flexibly combined for each spacecraft communication session. 
Multi-objective techniques for schedule optimization have the attractive advantage of 
explicitly capturing the constraints and preferences of the missions that use the DSN, as 
well as those based on system-level considerations, and providing unique insight into 
trade-offs among competing requirements.  We have investigated problem representation 
issues, objective and constraint formulations, and multi-objective optimization techniques 
that can be applied to this problem. We describe our initial results using an evolutionary 
algorithm on an illustrative sample problem (contention for a single antenna), and on a 
projected 2015 mission set with a three-site, 300 antenna array. The results are very 
promising, not only for generating initial schedules, but also for resolving conflicts where 
there is severe resource contention. 
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1.  INTRODUCTION 
As space technology and missions have progressed in capability, the demands for 

communications from Earth have likewise grown. Over the next 25 years it is projected that the 
number of missions will increase by a factor of three, that data rates and volumes will grow by a 
factor of 100, along with a significant increase in data link difficulty. In addition, plans for human 
exploration of the Moon, and eventually Mars, will place even greater demands on data rates and 
on the quality and reliability of communications links. Communications resources capable of 
supporting this demand are expensive and oversubscribed, and this is likely to continue for some 
time. Consequently there is a compelling need to efficiently plan, schedule, and control the 
communications assets that support ongoing missions. 

The Deep Space Network (DSN) is NASA’s current framework for communications with 
missions located anywhere between high earth orbit to outside the solar system. It comprises three 
sites, located in Goldstone, California, USA; Madrid, Spain; and Canberra, Australia, each with a 
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complement of large antennas (26m, 34m, and 70m) and associated radio communications 
equipment. However, these assets are aging and will be inadequate to support the anticipated 
growth in capacity over coming decades. Accordingly, there is a plan under investigation to move 
over time to a new communications architecture, consisting of large arrays of smaller, identical 
antennas, called the Deep Space Array Network (DSAN)[1]. Such an architecture has many 
advantages, including greater flexibility, lower hardware costs, and better scalability as capacity 
needs grow. However, to achieve sufficiently low-cost operations will require a very high degree 
of automation, which presents a major challenge. In addition, it is clear that the DSAN will not 
abruptly replace the existing DSN, but rather will phase in over an interval of years to as much as 
a decade. This means that for some extended period there will be a heterogeneous network 
consisting of today’s assets combined with a growing array—thus presenting an even more 
challenging planning and scheduling problem. 

In this paper we report on an investigation of the application of a class of evolutionary 
algorithms to the DSN/DSAN scheduling problem. Our work was motivated by one of the key 
features of the network scheduling problem, that of satisfying its many users as a primary measure 
of success. These users have competing objectives and must frequently compromise and tradeoff 
the satisfaction of their requests among other users as the schedule is developed. Thus the overall 
optimization problem is thus best characterized as multi-objective[2]. Previous work on this 
problem has concentrated on other aspects of this problem, including modeling[3], iterative 
repair[4], and systematic search[3, 5]. Related work on oversubscribed scheduling and space 
communications problems has been reported by Barbulescu et al.[6], Kramer and Smith[7], and 
Cheung et al.[8], however all of these authors characterize their objectives as single-valued. 

In the following we describe the overall scheduling optimization problem we are addressing 
(Section 2), followed by a brief description of multi-objective optimization and the evolutionary 
algorithm technique we have investigated (Section 3). We discuss our results in Section 4, first on 
an illustrative conflict resolution scenario, then on a larger model representing a projected 2015 
mission set. Of particular interest is the capability of the multi-objective approach to 
simultaneously assess alternative solutions based on user-specific objectives, thus immediately 
giving a view into the problem that is essential for later compromise and negotiation. We 
summarize our conclusions in Section 5 and note some areas for further investigation. 

2. THE DSN/DSAN SCHEDULING PROBLEM 
The DSN/DSAN scheduling problem has the following elements (see [2, 3] for a more 

detailed description): 
• Users — generally missions (but not necessarily, e.g. radio astronomy and radio science 

investigators also use the network) who have an agreed level of access to the network 
resources. Users formulate their requirements as service requests that specify what they 
need, when, and with what flexibility. 

• Assets — resources to be allocated to meet user requests, including large single antennas 
as well as (future) arrays of smaller antennas, subsets of which can be separately tasked 
to meet one user’s requirements over some time interval. 

Examples of requests include: 
• A 12h downlink service for Voyager 1, on any of the DSN’s 70m antennas, with no 

interruption, followed by a 6h uplink service within 18h, also on a 70m antenna, repeated 
every 72h with no gap longer than 60h • a 9h downlink for Cassini at Saturn, requiring at 
least 12 dedicated antennas from the DSAN, but preferably 15 to increase signal-to-
noise, centered on times when Cassini has maneuvered to point its radio antenna at Earth.  
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2.1. Objectives 
The optimization objectives in this problem most naturally break out on a user-by-user basis. 

User objectives can be viewed as quantifying a “degree of satisfaction” metric, where examples of 
factors that might contribute are provided in Table I. From an overall system perspective, 
optimization is driven by satisfying the maximum number of users, already addressed above. 
Objectives such as minimizing overall cost play only a minimal role since, once the network is in 
operation, it costs essentially the same whether it is highly utilized or not. In fact, the most 
important system-level objective is really to open as many gaps as possible in the schedule, and 
use them to service additional users. However, given a fixed set of users, a better system-level 
objective is to minimize risk to the schedule. 

The heterogeneous nature of the DSN/DSAN array impacts the specification of user requests. 
On today’s network of large antennas, a request generally specifies a set of mutually exclusive 
antenna choices. In a pure array architecture, a request would specify how many antennas are 
required, possibly as a function of time1. In a heterogeneous network, both of these possibilities 
must be allowed at the same time. 
 

Table I. Examples of contributors to user-specific objective functions 

Objective Description 
contact duration Min and max limits on duration, where a contact is the union of the 

coverage intervals of overlapping passes 
contact gap Duration min and max limits on the sizes of any gaps between contacts 

pass duration min and max limits on individual pass duration (a single 
resource allocation over time)  

gap duration Min and max limits on the sizes of any gaps between individual passes 
coverage fraction Fraction of some specified time interval with scheduled contact coverage 

(e.g. a value of “1” indicates continuous converage) 
coverage level Number of distinct passes simultaneously providing coverage (e.g. a 

value of “2” would mean simultaneous coverage from two different sites) 
total gap duration Total gap in coverage over a specified interval 
pass time shift How much a pass has shifted in time from some baseline requested time 
objective out of limit Extent to which an objective value exceeds a specified limiting range 

2.2. Constraints 
Constraints in the DSN/DSAN scheduling problem come from several sources. Mission 

constraints may be formulated in terms similar to objectives, the main difference being 
importance. For example, during a mission-critical event, what might otherwise be a preference 
for communications coverages may be elevated to the highest level of importance, such that no 
schedule without coverage will be considered. System level constraints include those based on 
overall resource availability, for example, reflecting maintenance schedules and the planned 
introduction of new assets. 

It is important to note that constraints and objectives can play a complementary role in a 
practical scheduling problem, which we exploit in the solution approach described in the next 
section. For example, consider a problem which is overconstrained such that no solution exists. In 
this situation it is extremely useful to obtain some insight into what constraints must be relaxed, 
and by how much, in order to assess feasibility. 

                                           
1The use of Ka band communications in the network architecture will lead to a greater sensitivity to atmospheric moisture; 
thus the number of required antennas may vary with spacecraft elevation, and also be larger in bad weather. 
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3. MULTI-OBJECTIVE OPTIMIZATION WITH GENERALIZED DIFFERENTIAL 
EVOLUTION 3 

As discussed in Section 2, the DSN/DSAN scheduling problem is naturally multi-objective in 
that there is no single scalar that characterizes an optimal solution. The traditional approach to 
problems like this is to construct such a single objective, e.g. by taking some function of the 
individual user objectives. However, it is obvious that important information is lost when this is 
done. To avoid this, we have adopted a multi-objective optimization perspective (e.g. [9]), in 
which information about each objective is kept separate and is thus available to assess tradeoffs 
and sensitivity.  Among the best current techniques for solving multi-objective optimization 
problems are evolutionary algorithms, in which a population of candidate solutions is developed 
and evolved[10, 11, 12, 13]. 

3.1. Multi-Objective Optimization 
We define a multi-objective optimization problem to minimize M objectives subject to K 

constraints: 

 minimize: {f1  ( x )}, i = 1…M 

 subject to:  (gj   ( x ))T  ≤  0,   j = 1…K 

Here x  represents a vector in decision space of dimension D. 
A solution is called Pareto optimal2 when no improvement can be made to one objective 

which does not make worse at least one other objective. The set of Pareto optimal solutions is 
called the Pareto frontier. What we seek as a solution to the multi-objective optimization problem 
is a good approximation to the Pareto frontier. Two important characteristics of a good solution 
technique are convergence to the Pareto frontier, and diversity so as to sample the frontier as fully 
as possible. 

3.2. Generalized Differential Evolution 3 
Among techniques developed to solve multi-objective optimization problems, evolutionary 

algorithms have become popular for a variety of reasons. They have been shown effective on a 
wide range of problems and are capable of dealing with objectives that are not mathematically 
well-behaved (e.g. discontinuous, non-differentiable). By maintaining a population of solutions 
they are capable of representing the entire Pareto frontier at any stage. They also lend themselves 
to parallelization, which is an important performance consideration for large problems. 

Here we concentrate on one particular variant called Generalized Differential Evolution 3, or 
GDE3[14]. This technique is based on Differential Evolution, a single objective evolutionary 
algorithm for real-valued decision spaces[15].  GDE3 makes use of concepts pioneered in the 
algorithm NSGA II[16], including: 

• Non-dominated sorting of the population into ranks, such that members of rank n 
dominate members of all ranks > n. Rank 1 members constitute the non-dominated set, 
that is the current approximation to the Pareto frontier. 

• Crowding distance is used as a secondary discriminator on members of the same rank: 
members in crowded regions of the population are scored lower, so the surviving 
members after selection have greater diversity. This helps prevent premature 
convergence of the population to a small portion of the Pareto frontier. 

                                           
2See the discussion by Deb[11] of the key concepts and definitions of multi-objective optimization. 
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• Population members are compared with a domination or constraint-domination 
relation— the latter allows for comparisons even when constraints are violated. 

GDE3 operates as follows to evolve the population of size N from one generation to the next:  
1. For each parent member of the population ix , select three distinct population members 

21
, rr xx , and 

3r
x , all different and different from the parent 

2. Calculate a trial vector ( )
32 rrri xxFxy

i
+⋅+= , where F is a scaling factor 

3. Modify the trial vector by binary crossover with the parent with probability CR  
The result is compared with the parent as follows: 
• in case of infeasible vectors, the trial vector is selected if it weakly dominates the parent 

vector in constraint violation space, otherwise the parent vector is selected 
• in the case of feasible and infeasible vectors, the feasible vector is selected 
• if both vectors are feasible, then the trial is selected if it weakly dominates the parent in 

objective space; if the parent dominates the trial, then the parent is selected; if neither 
dominates, then both are selected 

The selected vectors may constitute a population of size > N, in which case the population 
size is reduced through the non-dominated sorting and crowding distance mechanism of NSGA II. 

In the work reported here, we implemented both NSGA II and GDE3, and then compared 
their behavior on several communications network problems modeled as in 3.3. We found that 
NSGA II was much slower to converge, and for a given number of iterations produced a much 
less well-sampled Pareto frontier. As a result, we have focused on GDE3 as a preferred algorithm. 
We plan in future work to better characterize the performance of GDE3 as compared with variants 
of other evolutionary algorithms on these problems. In addition to high performance, it is also 
worth noting that one of the strengths of GDE3 is its natural treatment of multiple constraints: it is 
straightforward to change constraints into objectives when investigating overconstrained 
problems. This is especially valuable when constraints must be relaxed in order to find any 
feasible solutions. 

# antennas
required

min

max

time (ξ1,ξ2,ξ3) time
 

Figure 1. Decision variables for the array antenna allocation: a real-valued triple is sufficient 
to specify the antenna allocation profile over each possible view period (see Section 3.3) 

3.3. Modeling the Network Scheduling Problem 
In this section we describe the encoding method we adopted for representing the DSN/DSAN 

scheduling problem. We consider a user collection of U users (i.e. missions and other users), over 
some scheduling time period [Ts, Te]. Associated with each user is a set of view periods, each of 
which is a time interval during which some specific antenna is available for allocation to that 
mission, or in case of the array, when some number of array antennas at one site may be allocated. 
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We denote the view periods by [ ,s e
up upV V ], where u = 1. . .U ranges over users, and p = 1. . .Pu 

ranges over the set of view periods for each user. For array allocations, the minimum required 
time-varying antenna profile is given by ( )up

reg
up VtA ∈ , which may differ from one view period to 

another. Above the minimum required level, additional array antennas might be allocated, e.g. to 
improve signal strength in the face of uncertain weather: we denote the maximum additional 
allocation by upΔ . For single antenna allocations, the profile function is constant reg

upΔ  = 1, and 

upΔ = 0. 

For decision variables we selected a mechanism that preserves neighborhoods in general, so 
that a small perturbation in the value of the decision vector will result in a small change to the 
scheduled allocation. These are defined as follows (suppressing the up subscripts), as illustrated in 
Figure 1: 
1. For each view period, define a triple of real-valued decision variables [ ]1,0,, 321 ∈ξξξ  

2. Calculate the start and end of the allocated portion of the view period as ts = Vs + 1ξ (Ve −Vs) 

and te = ts + 2ξ  (Ve−ts), respectively 

3. Calculate the allocated antenna quantity (for array allocations) as A(t) = Areq(t)+ceil( Δ3ξ ) 

For single antenna allocations only a pair of decision variables is required 21,ξξ since the 
antenna allocated quantity is constant. 

4. RESULTS 
We have applied the evolutionary algorithm described in Section 3 to a variety of network 

scheduling scenarios, with very promising results. In the following we first describe a simple but 
illustrative conflict resolution scenario for the DSN, followed by an DSAN scheduling example 
for a much larger mission set and time range. 

4.1. A Conflict Resolution Scenario 
A frequent occurrence in today’s DSN scheduling process is that two or more missions find 

themselves in conflict over the usage of a particular antenna in some time interval. Through a 
process of analysis, discussion, and negotiation, each such conflict must be resolved, generally by 
a tradeoff or compromise of one or another mission’s requested allocation.  To illustrate how our 
evolutionary multi-objective formulation of the problem can be of use in this situation, consider 
the following toy problem consisting of three mission users U1, U2, and U3, and three antennas 
A1, A2, and A3. We consider a one day schedule and use time units of fractional days for 
simplicity. 
• U1 has view periods on A1 and A2 over the interval [0.1,0.6] and is initially scheduled on A1 

in [0.2,0.6]. 
• U2 has a single view period on A1 from [0.4,0.9] and is initially scheduled there in [0.4,0.8]. 
• U3 has view periods on A2 and A3 over the interval [0.1,0.6] and is initially scheduled on A2 

over [0.2,0.6]. 
All three users have specified a constraint that their allocation during the day have a 

minimum duration of 0.3. In addition, there is a system constraint that no resource be overloaded. 
The diagram in Figure 2(a) illustrates the situation: the initial schedule has a conflict between U1 
and U2 on A1 in the interval [0.4,0.6], and each user has a preference to retain their original 
scheduled allocation. The view periods for each user are illustrated in Figure 2(b). 
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Figure 2. A conflict resolution example: (a) an initial schedule with conflict, (b) allowed 
antennas and view periods for the three users, and (c) Pareto frontier projected to U1-U2 
plane, showing two families of solution types. 

The most interesting aspect of the evolutionary algorithm solution is that the resulting rank 1 
population covers several qualitatively different families of tradeoff possibilities (distinguished by 
jumps in allocation from one antenna to another), as illustrated in Figure 2(c) where we have 
plotted the projected U1 and U2 objective values on the Pareto frontier (after 300 generations, 
population size 300). 
• Figure 2(c) upper: points along this curve represent tradeoffs between U1 and U2 (leaving U3 

unaffected), such that both remain on the same antenna A1. The tradeoffs are in either the 
durations or start times of the U1 and U2 allocations, so they both fit within their available 
view periods. 

• Figure 2(c) lower: this point represents a (projected) family of solutions in which U1 and U2 
are allocated at their preferred times and durations, but U1 and U3 are shifted to their less 
preferred antennas A2 and A3, respectively. Variations in U3 all project to this point in this 
U1-U2 objective view. 
This ability to reveal entire families of tradeoff possibilities, consisting of Pareto optimal 

candidate schedules, is a very powerful feature of this approach. In this particular example, 
Pareto-optimal candidate schedules form multiple distinct clusters: within each cluster, the 
schedules are qualitatively the same but differ in some quantitative way (e.g. there are minor shifts 
in allocation start time or duration). This makes it possible for clusters to be considered as a 
whole, while at the same time ensuring that each is Pareto optimal and thus superior in one or 
more objective values. It is worth pointing out that this automatic generation of solution clusters is 
not possible with conventional single-objective optimization methods. 
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4.2. A 2015 Projected Mission Set 
To assess our approach on a larger scale problem we have applied it to a projected 2015 

mission set, modeling a multi-site array of 12m X-band arrayed antennas. The main features of the 
problem are: 
• Seventeen missions requiring from 1 to 94 antennas for each pass 
• Periodic pass requirements ranging from every 8 hours to once per week, with pass durations 

ranging from 1 to 12 hours, and a 20% flexibility in pass and gap duration 
• Three sites equally spaced in longitude, each with 100 antennas 
• A one-week scheduling interval with one hour resolution 

This problem consists of 760 decision variables and 17 objectives (one per mission user). We 
have made a variety of runs to evaluate the effect of population size and flexibility levels. The 
results are encouraging, in that the population evolves fairly quickly from infeasible to feasible 
candidates, then refines the Pareto frontier to develop a wide range of tradeoff alternatives. We 
have used this larger dataset to evaluate the scaling performance of the GDE3 approach. The 
results are shown in Figure 3, which shows time per generation scaling as αN logN with 
population size N, and linearly with size of the time resolution interval into which the week is 
divided. 
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Figure 3. Scaling behavior on a 2015 projected mission set as a function of (left) population 
size N (α NlogN) and (right) time resolution interval 

5. CONCLUSIONS 
Our results have shown that an evolutionary algorithm can be effectively applied to the 

intrinsically multi-objective scheduling problem of large scale space network communications 
scheduling, and presents several advantages over previous approaches, including: 
• Explicit and separate representation of each mission’s objectives (and potentially even sub-

objectives), making it more straightforward to consider tradeoffs and compromises to resolve 
conflicts 

• A population of Pareto-optimal solutions to use in schedule selection, as well as a starting 
point when revising the schedule when changes inevitably occur 
There remain a number of areas to be investigated in the future: 

• Highly constrained problems and their impact on convergence properties: when feasible 
solutions are hard to find, the first ones encountered in an evolving population may 
disproportionately channel the solution to their vicinity, leading to premature convergence 
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• The effect of different parameter choices (F and CR) for the GDE3 algorithm 
• The crowding distance calculation and whether it can be improved to enhance solution 

diversity: Kukkonen and Deb[17] have developed an improvement to the NSGA II definition, 
and have pointed out some problems with the calculation for higher dimensional objective 
spaces 
The research described in this paper was carried out at the Jet Propulsion Laboratory, 

California Institute of Technology, under a contract with the National Aeronautics and Space 
Administration. 
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