
Request-Driven Scheduling for NASA’s Deep Space Network

Mark D. Johnston, Daniel Tran, Belinda Arroyo, and Chris Page
Jet Propulsion Laboratory/California Institute of Technology

4800 Oak Grove Drive
Pasadena, California 91109

Abstract

This paper describes recent work undertaken to increase the
level of automated scheduling support available to users of
NASA’s Deep Space Network (DSN). We have adopted a
request-driven approach to DSN scheduling, in contrast to the
activity-oriented approach used up to now. We describe some
of the key constraints and preferences of the DSN schedul-
ing domain and how we have modeled these as scheduling
requests. Algorithms to expand requests into valid resource
allocations, and to resolve schedule conflicts and unsatisfied
requests, have been developed and incorporated into a dis-
tributed system of servers called the DSN Scheduling Engine
(DSE). To explore the usability aspects of our approach we
have developed a pathfinder graphical user interface that uti-
lizes the DSE. This GUI incorporates several key features to
make it easier to work with complex scheduling requests, in-
cluding progressive revelation of detail, immediate propaga-
tion and feedback of implications, and a “meeting calendar”
metaphor for repeated patterns of requests. This pathfinder
system has been deployed and adopted by one of the JPL
DSN scheduling teams, representing an initial validation of
our overall approach. The DSE is planned to be a central
element of the Service Scheduling Software (S3) web-based
scheduling system now under development for deployment to
all DSN users.

Introduction
NASA’s Deep Space Network (DSN) provides communi-
cations services for planetary exploration missions as well
as other missions beyond geostationary, supporting both
NASA and international users. It also constitutes a scien-
tific observatory in its own right, conducting radar investi-
gations of the moon and planets, in addition to radio sci-
ence and radio astronomy. The DSN comprises three an-
tenna complexes in Goldstone, California; Madrid, Spain;
and Canberra, Australia. Each complex contains one 70m
antenna and several 34m antennas, providing S-, X-, and
K-band up and downlink services. The distribution in longi-
tude enables full sky coverage and generally provides some
overlap in spacecraft visibility between the complexes. A
more detailed discussion of the DSN and its capabilities can
be found in (Imbriale 2003).

Copyright c© 2009, California Institute of Technology. Govern-
ment sponsorship acknowledged.

Figure 1: The 70m antenna at the Goldstone DSN complex
in California

The process of scheduling the DSN is complex and time-
consuming. There is significantly more demand for commu-
nications services than can be handled by the available as-
sets. There are numerous constraints on the assets and on the
timing of communications supports, due to spacecraft and
ground operations rules and preferences. Most DSN users
require a firm schedule around which to build spacecraft
command sequences, weeks to months in advance. Cur-
rently there are several distributed teams who work with
missions and other users of the DSN to determine their com-
munications needs, provide these as input to an initial draft
schedule, then iterate among themselves and work with the
users to resolve conflicts and come up with an integrated
schedule. This effort has a goal of a conflict-free schedule
by eight weeks ahead of the present, which is rarely met in
practice. In addition to asset contention, many other factors
such as upcoming launches (and their slips) contribute to the
difficulty of building up an extended conflict-free schedule.



There have been a variety of efforts over the years to
increase the level of automation in the DSN to support
scheduling. Currently, the DSN scheduling process is
centered around the Service Preparation Subsystem (SPS)
which provides a central database for schedules and for the
auxiliary data needed by the DSN to actually operate the an-
tennas and communications equipment (e.g. viewperiods,
sequence of event files). The TIGRAS program (Borden,
Wang, & Fox 1997) is used for schedule viewing and edit-
ing, along with a number of other tools for generating spe-
cialized reports and graphics. The current effort to improve
scheduling automation is designated the Service Scheduling
Subsystem, or S3, which will be integrated with SPS. There
are three primary features of S3 that are expected to improve
the scheduling process:
• unifying the scheduling software and databases into a sin-

gle integrated suite covering realtime out through as much
as several years into the future

• adopting a request-driven approach to scheduling (as
contrasted with the current activity-oriented scheduling)

• development of a peer-to-peer collaboration environment
for DSN users to view, edit, and negotiate schedule
changes and conflict resolutions

In this paper we focus on the second of these major capa-
bilities — request-driven scheduling, and its implications in
terms of a scheduling request specification or “language”,
and on the scheduling algorithms themselves. We first pro-
vide some background on the DSN scheduling problem and
the existing scheduling tool suite, and on the rationale for
the approach taken by S3. We then describe the schedul-
ing request specification, which is how DSN users will de-
scribe their service requests to the system. These requests
are processed by the DSN Scheduling Engine (DSE), which
expands schedule requests into tracking passes, integrating
them into an overall schedule, seeking to minimize conflicts
and request violations. A pathfinder graphical user inter-
face has been developed for creating and editing schedule
requests, and integrating them into schedules and minimiz-
ing conflicts. This pathfinder version has been deployed in
a test configuration for several months, and we describe our
experiences to date and lessons learned from this prelimi-
nary deployment. We conclude with an overall status sum-
mary, and a description of plans for ongoing development.

Background
The driving factors towards increased automation of the
DSN come from several directions. The expected increase in
the number of missions from NASA and international part-
ners will put more and more pressure on the available DSN
resources, a trend which is expected to accelerate in the fu-
ture. More missions are expected to have higher data vol-
umes and greater link complexities. At the same time, there
is a strong desire to reduce operations costs, while increasing
reliability and continuing to provide 24h service coverage.

Increased automation support for DSN scheduling has a
long history. LR-26 was a customizable heuristic schedul-
ing system for the 26-meter antennas using Lagrangian re-
laxation and constraint satisfaction search techniques(Bell

1992). Operation Mission Planner (OMP-26) used heuristic
search to allocate 26-meter antennas to missions, and linear
programming to adjust track durations(Kan, Rosas, & Vu
1996). The Demand Access Network Scheduler (DANS)
included all antennas and used a heuristic iterative repair ap-
proach (Chien et al. 1997). Other investigations into are
described in (Fisher et al. 1998; Clement & Johnston 2005;
Johnston & Clement 2005; Guillaume et al. 2007).

The current DSN scheduling software project S3 is de-
rived from a 2004 resource allocation process working group
that analyzed the DSN scheduling process and identified a
key set of goals for implementation, listed in the Introduc-
tion. One of these goals centers on the basic entities that
drive the schedule. In the past, and currently, these are the
scheduled communications passes (tracks) or other individ-
ual activities that are placed on the schedule. All of the soft-
ware to create, manage, and report the DSN schedule are
built around a representation of the schedule as a collection
of activities. The shift to a request-driven (sometimes called
requirements-driven) approach is a fundamental shift in rep-
resentation, adding a layer above tracks, such that the pre-
dominant control mechanism of users over the schedule is
via scheduling requests, rather than the individual scheduled
activities. Note that it is not anticipated that individual ac-
tivities can be bypassed; indeed, all the basic capabilities of
activity-oriented scheduling are still required: users need to
be able to edit individual activities, for reasons that may not
be expressible in the form of scheduling requests. However,
the net benefits of a request-driven approach outweigh those
of activity-oriented scheduling in several important ways:
• leveraged effort: one scheduling request can generate and

be used to manage many scheduled activities, and one
change to a request can propagate to all activities derived
from it; this can significantly reduce the ongoing effort
needed to generate the schedule and manage its changes

• automated continuous schedule validation: based on the
request specification, the schedule can be continuously
monitored against constraints and preferences; this can
help minimize the effort to ensure that schedule changes,
as they invariably occur, will not introduce undetected in-
consistencies between requests and activities

• traceability: all activities trace to scheduling requests that
describe the purpose and intent of the generated activities

The main disadvantage of a request-driven approach is that
the request specification language is complex(Clement et al.
2008). There are many options and subtleties involved in
describing the constraints and preferences on DSN activities,
and a sufficiently rich representation of these is necessarily
large and complicated. Some of the problems that ensue are:

1) what appears at a high level to be a simple request is
often much more involved when practical details are consid-
ered, yet all of these details may be needed (even if rarely)
to fully describe how and when a particular activity can be
scheduled. Users do not want to be bombarded with requests
for detail when using the system, but neither will they accept
that they cannot make use of all available options.

2) many interdependent options can make it difficult to tell
whether a request is feasible: the interactions of time win-



dows with other request parameters can all too easily lead
to inconsistencies, which may not show up until late in the
scheduling process.

3) failure to accurately represent the correct applicable
flexibilities forces schedulers to use workarounds that arti-
ficially limit flexibility, thus inhibiting user acceptance of
the system. For example, if it is not possible to represent
that any one of several choices is acceptable, then the hu-
man scheduler must pick one, and the advantages of having
the flexibility are lost.

These factors pose a major challenge to a request-driven
approach, in that the effort of creating and managing re-
quests, and their consequent benefits in continuous valida-
tion of schedule, must be shown to be overall more benefi-
cial than an activity-oriented approach in order to gain user
acceptance. In the following section we describe how we
have approached the problem of representing DSN schedul-
ing requests, and a later section, how we have addressed the
way that users can specify complex options.

DSN Scheduling Requests
DSN scheduling requests specify the services required and
their associated constraints and preferences.

Services
Services include use of any of the available capabilities of
the DSN, including uplink and downlink services, Doppler
and ranging (for spacecraft navigation), as well as more spe-
cialized capabilities. The details of a spacecraft’s service
specification depend on the onboard hardware and software
(the frequency band, encoding, etc.). Along with other fac-
tors such as radiated power levels and distance from the
Earth, these all determine a set of antennas and associated
equipment (transmitters, receivers, etc.) that must be sched-
uled to satisfy the request. However, these assets are not
all equally desirable, and so there are preferred choices for
antennas and equipment that also need to be considered.

In addition to single antenna/single spacecraft communi-
cations, there are a variety of other DSN service types. Some
missions need the added sensitivity of more than one an-
tenna at once, and so make use of arrayed downlinks using
two or more ground antennas. For navigation data, there
are special scenarios (DDOR) involving alternating the re-
ceived signal between the spacecraft and a nearby quasar,
over a baseline that extends over multiple complexes. For
Mars missions, there is a capability to communicate with
several spacecraft at once (called Multiple Spacecraft Per
Aperture, or MSPA): while more than one may be sending
down data at once, only one at a time may be uplinking.
Another feature of the Mars mission complement is the ca-
pability to relay data from surface missions such as the Mars
Exploration Rover (MER) rovers, via the Mars orbiting mis-
sions such as Mars Odyssey and the Mars Reconnaissance
Observer (MRO).

Constraints
Constraints on DSN scheduling requests fall into several
broad categories. The most important is timing: users need

a certain amount of communications contact time in order
to download data and upload new command loads, and for
obtaining navigation data. How this time is to be allocated is
subject to many options, including whether it must be all in
one interval or can be spread over several, and whether and
how it is related to external events and to spacecraft visibil-
ity. Table 1 lists a number of these factors.

A second category of constraint is that of relationships
among contacts. In some cases, contacts need to be suffi-
ciently separated so that onboard data collection has time to
accumulate data but not overfill onboard storage. In other
cases, there are command loss timers that are triggered if
the time interval between contacts is too long, placing the
spacecraft into safemode. During critical periods, it may
be required to have continuous communications from more
than one antenna at once, so some passes are scheduled as
backups for others.

A third category of constraint can be called “distribution”
requirements. These cover some extended time span and
specify constraints on certain aspects of overall set of activi-
ties during that time. Examples include: a certain proportion
of 70m contacts; ensuring that navigation passes are spread
out roughly evenly between the northern and southern hemi-
sphere complexes; ensure that not all contacts in a week are
on the same antenna.

Preferences
In addition to constraints, there are numerous preferences
that scheduling users have as to how their activities are to
be scheduled. Many would prefer additional time if it is
available, while at the same time are able to reduce some
contact durations in order to resolve a contentious period on
an antenna. There are preferences on gap durations, whether
tracks are split or continuous, for tracks to occur during day
shift at a particular operations center, and so on. While some
of these preferences are implicit, some must be explicit and,
if they apply, need to be specified as part of the scheduling
request.

Priority
Priority plays a significant role in DSN scheduling, but not
the dominating role that it plays in some other systems (e.g.
(Calzolari et al. 2008)). Critical events (launches, surface
landings, planetary orbit insertions) preempt other more rou-
tine activities. Other than critical activities, missions have
higher priorities during their prime (initial phases) than dur-
ing their later extended missions. However, higher priority
does not automatically mean that resource allocations are
assured. Depending on their degree of flexibility, missions
trade off and compromise in order to meet their own require-
ments, while attempting to accommodate the requirements
of other users. As noted above, one of the key goals of S3 is
to facilitate this process of collaborative scheduling.

Patterns of Requests
One characteristic of DSN scheduling is that, for most users,
it is common to have repeated patterns of requests over ex-
tended time intervals. Frequently these intervals correspond



Constraint Description

reducible whether and by how much the requested time can be reduced to fit in an available opportunity

extensible whether and by how much the requested time can be increased to take advantage of available resources

splittable whether the requested time must be provided in one unbroken track, or can be split into two or more

split duration if splittable, the minimum, maximum, and preferred durations of the split segments; the maximum number of
split segments

split segment
overlap

if the split segments must overlap each other, the minimum, maximum, and preferred duration of the overlaps

split segment gaps if the split segments must be separated, the minimum, maximum, and preferred duration of the gaps

viewperiods periods of visibility of a spacecraft from a ground station, possibly constrained to special limits (rise/set, other
elevation limits)

events general time intervals that constrain when tracks may be allocated; examples include:

• day of week, time of day (for accommodating shift schedules, daylight, ...)
• orbit/trajectory event intervals (occultations, maneuvers, surface object direct view to Earth, ...)

Different event intervals may be combined and applied to one request. The included events may have a
preference ordering.

Table 1: A sample list of possible timing constraints and preferences that can apply within a DSN scheduling request

to explicit phases of the mission (cruise, approach, fly-by,
orbital operations). These patterns can be quite involved,
since they interleave communication and navigation require-
ments. The presence of repeated patterns can be exploited in
representing scheduling requests that vary minimally or not
at all over some time frame, as will be discussed further be-
low.

DSN Scheduling Engine
The DSN Scheduling Engine (DSE) is that component of S3

responsible for:
• expanding scheduling requests into individual communi-

cations passes by allocating time and resources to each
• identifying conflicts in the schedule, both for resources

and for any other violations of DSN scheduling rules, and
attempting to find conflict-free allocations

• checking scheduling requests for satisfaction, and at-
tempting to find satisfying solutions

Schedule conflicts are based on the schedule alone, not on
any correspondence to schedule requests, and indicate either
a resource overload (e.g. too many activities scheduled on
the available resources) or some other violation of a schedule
feasibility rule (see Table 2a for a representative list). In
contrast, violations (Table 2b) are associated with schedule
requests and with their tracks, and indicate that the request
is not being satisfied in some version of the schedule.

Architecture
The DSE is based on ASPEN, the planning and scheduling
framework developed at JPL and previously applied to nu-
merous problem domains (Chien et al. 2000). In the context
of S3, there may be many simultaneous users, each working

SMA

JMS messagebus

Schedule Manager 

Application

AMA

ASPEN

ASPEN Manager 

Application

DSE (DSN Scheduling Engine)

Figure 2: DSE architecture

with a different time segment or different private subset of
the overall schedule. This has led us to develop an envelop-
ing distributed architecture (Figure 2) with multiple running
instances of ASPEN, each available to serve a single user
at a time. We use a Java Messaging System (JMS) middle-
ware tier to link the ASPEN instances to their clients, via an
ASPEN Manager Application (AMA) associated with each
running ASPEN process. A Scheduling Manager Applica-
tion (SMA) acts as a central registry of available instances
and allocates incoming work to free servers. This architec-
ture provides for flexibility and scalability: additional sched-
uler instances can be brought online simply by starting them
and having them register with the SMA.

The DSE communicates with clients using an XML-
based messaging protocol, similar to HTTP sessions but
with responses to time-consuming operations returned asyn-
chronously. Each active user has a session (possibly more
than one) which has loaded all the data related to a sched-
ule that user is working on. This speeds the client-server



(a)

Conflict Type Description

Spacecraft Multiple tracks of the same mission share the same temporal extent

Beginning of Track
– BOT*

Multiple tracks start with in 15 minutes of Goldstone and 30 minutes for Canberra and Madrid.

Start of Activity –
SOA*

Multiple tracks start with in 15 minutes of Goldstone and 30 minutes for Canberra and Madrid.

Antenna (Facility) Multiple non-MSPA tracks use the same antenna at one time

Equipment* Multiple tracks share the same equipment during the same temporal extent

Viewperiod The spacecraft/user is out of view of the track antenna

Teardown The post-track teardown time does not match the expected teardown time

Setup The pre-track setup time does not match the expected setup time
*Not enabled in initial DSE release

(b)

Violation Type Description

Track Quantization The track start or end time violates the request quantization constraint. For example, requests can specify that
tracks start or end only at 5 minute intervals.

Track Separation If the request is splittable, the separation time between two tracks violates the split segment overlap or split
segment gap constraint.

Track Duration If the request is splittable, the track duration violates the request split duration constraint.

Service
Specification

The track violates the request service specification, i.e. the antenna or equipment allocated does not match the
requested service.

Total Track
Duration

The total track duration does not meet the requested duration

Number of Tracks The number of tracks for the requests violates the maximum. For a non-splittable track, this limit is 1; for a
splittable track, the limit may be specified.

Track Temporal
Extent

The track start or end time falls outside the scheduling request’s time interval.

Event Reference The track time interval violates the intersection of the event time intervals referenced by the scheduling
request.

Request Reference The track time interval violates the scheduling request’s temporal constraint link to other requests.

Table 2: Representative schedule conflicts (a) and violations (b)



interaction, especially when editing scheduling requests and
activities, when there can be numerous incremental schedule
changes.

There are a few basic design principles around which the
DSE has been developed, derived from its role as provider
of intelligent decision support to DSN schedulers:

• no unexpected schedule changes:

– all changes to schedule must be requested, explicitly or
implicitly

– the same sequence of operations on the same data will
always generate the same schedule

• even for infeasible scheduling requests, attempt to return
something “reasonable” in response, possibly by relax-
ing aspects of the request; along with a diagnosis of the
sources of infeasibility, this provides a starting point for
users to handle the problem

Algorithms
With these design principles in mind, several automated
scheduling algorithms were developed to generate activities
from scheduling requests. Users may lock requests and ac-
tivities to ensure that they are not modified, and the execu-
tion of these algorithms is under the explicit control of the
user (see GUI description). Also, there are no stochastic ele-
ments to these algorithms, thus ensuring that repeated opera-
tions with the same data always generate the same schedule.

Initial generation of tracks The initial layout algorithm
(Algorithm 1) is executed to initially generate tracks to sat-
isfy the specifications of the request. The algorithm con-
sists of a series of systematic search stages over the legal
track intervals, successively relaxing constraints each stage
if no solution is found. The systematic search algorithm is a
depth-first search algorithm over the space of available an-
tenna start times and durations for each scheduling request.
The set of legal antennas for scheduling is defined in the
request service specification, while the available start times
and durations search space is defined by the request quanti-
zation value.

We are employing four relaxation strategies. These strate-
gies are outlined below, with each relaxation strategy build-
ing upon the previous.

• temporal linkage — the explicit temporal relationships
between tracks in the same or different requests

• track separation — between two track segments from a
splittable request

• event intervals — the time intervals (exclusive of viewpe-
riods) that constrain the timing of the track

• spacecraft, antenna, and equipment — removing these
conflicts from consideration (Table 2) leaves only the
viewperiod constraint

These relaxation strategies allow for tracks to be generated
even though the scheduling request may be infeasible (in
isolation or within the context of the current schedule), and
provides the user a starting point to make any corrective

Algorithm 1 Initial Layout
For each request in the schedule

Remove existing request tracks
Systematically search legal intervals to satisfy the request
If success

Continue to next request
End if

Remove all lower priority tracks in request interval
Systematically search legal intervals to satisfy the request
If success

Add all tracks removed
Continue to next request

End if

Remove all equal priority tracks in request interval
Systematically search legal intervals to satisfy the request
If success

Add all tracks removed
Continue to next request

End if

Remove all remaining tracks in request interval
Systematically search legal intervals to satisfy the request
If success

Add all tracks removed
Continue to next request

End if

For each relaxation strategy
Systematically search legal intervals to satisfy request
If success

Add all tracks removed
Continue to next request

End if
End for

End for

Algorithm 2 Repair Conflicts/Violations
Until timeout or schedule is conflict/violation free

Choose a conflict or violation
Identify the contributing requests
For each request

Checkpoint current state
Systematically search the legal intervals to satisfy

the request
If success or timeout

Continue to next conflict/violation
Else

Recover to checkpoint state
End if

End for
End until

Algorithm 3 Extend Track To Preferred Duration
For each conflict-free track in the schedule

Checkpoint current state
Extend duration of track to min(legal interval duration,

preferred duration requested)
If violations created

Recover to checkpoint state
End if

End for



changes as needed. These changes may range from modify-
ing the scheduling request to introduce more tracking flex-
ibility, to contacting other mission schedulers to negotiate
different request time opportunities.

Repairing the schedule Once an initial schedule has been
generated, conflicts and/or violations may exist in the sched-
ule due to the relaxation of constraints. The DSE provides a
basic repair algorithm to reduce conflicts or violations, de-
scribed as Algorithm 2. Note that conflicts and violations are
independent, so there are separate versions provided through
the user interface for users to invoke.

Optimizing existing tracks in the schedule We also pro-
vide the user a method for optimizing existing tracks in the
schedule. For requests that are reducible in duration, the
above scheduling algorithms may return tracks that, while
strictly satisfying the request specifications, have durations
that are less than the preferred value, e.g. in order to fit into
an available opportunity window. We thus provide an ad-
ditional algorithm (3) that attempts to achieve the preferred
track duration values.

Performance
We have conducted initial performance testing of the DSE,
based on schedules of varying duration from 1 week through
6 months. For these tests we used the same 14 mission sam-
ple, and repeated their requests uniformly over the entire
schedule period. The results are shown in Figure 3: both
runtime and memory usage are very well behaved, showing
roughly linear growth over the time range of interest.

User Interface
To investigate the capability of the request specification
language outlined above, we have developed a pathfinder
graphical user interface and web application. The user inter-
face incorporates all of the major basic features of schedul-
ing requests, including viewperiod and event management,
and scheduling request creation and editing with all of the
features noted in Table 1. This UI acted as a DSE client
for expanding schedule requests to tracks, identifying and
resolving conflicts, and identifying and resolving request vi-
olations. The main simplification was to limit the DSE/UI to
single-mission, single antenna scenarios, a restriction which
is being lifted as further development takes place.

The overall architecture of the DSE+UI is illustrated in
Figure 4. Multiple users can work with the system at once,
each on their own workstation. Each user has installed a
locally running copy of the GUI client, which stores a lo-
cal copy of all the data needed for scheduling including
viewperiod files, event definitions, scheduling requests, and
schedules. All changes to these data items are mirrored on
a REST-based web application, which also ensures that as-
signed identifiers are globally unique. Users can then share
data items via a command to the web application that trans-
fers over all data associated with a given schedule, includ-
ing the scheduling requests and any data needed to properly
interpret them. This enables users to work on different mis-
sions completely independently, yet integrate their requests

(a)

!

!

!

!

0 5 10 15 20 25
0

50

100

150

200

250

Schedule Duration !weeks", 14 missionsE
n
g
in
e
In
it
ia
l
L
a
y
o
u
t
T
im
e
!sec

"

(b)

! !

!

!

0 5 10 15 20 25
0

100

200

300

400

500

Schedule Duration !weeks", 14 missionsE
n
g
in
e
M
e
m
o
ry
U
s
a
g
e
!Mb"

Figure 3: DSE performance scalability for schedules from 1-
week to 6-months in duration: (a) run time for initial layout
(~10 sec/week) and (b) memory usage (~15Mb/week)

into a single schedule at the appropriate time. Note that this
architecture differs from that of S3, which is based on a cen-
tral database and web browser-based client.

The pathfinder GUI was intended to explore and assess
several aspects of user interaction with the scheduler:

1. Progressive revelation of detail: as noted above, schedul-
ing requests can potentially contain many adjustable pa-
rameters, often with interrelationships among them. The
GUI uses an animation technique to fade in or out rele-
vant parameter choices, as soon as a dependent choice is
made. For example, if a request is for tracking time that
is not splittable, then none of the parameters that control
splitting are visible on the screen (split minimum dura-
tion, maximum number of segments, whether split seg-
ments must overlap or be separated, etc.) However, as
soon as the user selects the splittable option, a subset of
these parameters will fade in. This is chained several lev-
els deep, e.g. overlap parameters settings are not shown
unless the user specifies that the split segments must over-
lap (Figure 5).

2. Immediate display of implications: another aspect of the
potential complexity of scheduling requests is that it is
not difficult to overspecify a request, thus making it im-
possible to satisfy. For example, the duration of schedul-



User1

UserN
SMA

AMA

ASPEN

JMS

REST 

webapp
User2

UserN

User1

...

DSE

HTTP

Figure 4: The architecture of the DSE/UI pathfinder user
interface

ing request may not fit within any schedulable time inter-
val allowed by the intersection of viewperiods and timing
event intervals. Rather than wait for later schedule gen-
eration, the pathfinder GUI application adopts a strategy
of 1) propagating all known information as far as pos-
sible, with the goal of early diagnosis of any problems,
and 2) visually displaying as much of this propagated
information as possible. For example, as the user edits
a scheduling request, the system dynamically calculates
the intersections of viewperiods and all timing event win-
dows, displays the result for all allowable antennas that
could potentially satisfy a request, and then checks to see
whether the total requested time is available, as well as
whether the time requested for any segment is consistent
with the request’s timing parameters. The results are dis-
played as a “preview” Gantt view along side the request
parameters.

3. The “meeting calendar” metaphor for repeated patterns
of requests: as noted above, many users formulate their re-
quests as a repeated pattern, with variations. We adopted
the metaphor of a meeting calendar program, with which
most users are familiar, e.g. in which a meeting or ap-
pointment is created and then designated as “recurrent”.
For DSN scheduling, the repetition intervals are some-
times along typical calendar lines (e.g. daily, weekly),
but often are based on trajectory or celestial events (e.g.
every visibility interval, or opportunity for a Mars rover
to reach earth with its antenna). Additional requirements
include the option to place time linkages between succes-
sive repetitions, e.g. to prevent two neighboring passes
from being too close together (Figure 6).

Once scheduling requests have been created, they may be
combined to generate a schedule by invoking the DSE to ex-
pand the requirements into explicit tracks. The DSE gener-
ates and returns the scheduled activities, identifies conflicts,
and checks that all requests are satisfied. The user may in-
voke a conflict repair strategy, or requirement violation re-
pair strategy, based on the heuristics described above. The
GUI allows the user to view the schedule, identify conflicts
(shown as red in the Gantt chart view), and see any unsatis-
fied requests (indicated by a red “×” in the request list on the
left). Individual schedule items can be edited, and requests

(a)

(b)

Figure 5: Example of progressive display of detail for re-
quest parameters: the parameters for “splittable” do not ap-
pear (a) unless the option is selected, in which case they fade
into view (b).

Figure 6: Example of configuring a recurrent request, here
a simple weekly repetition for 8 weeks total. The preview
Gantt view at the bottom shows the original pattern time
span, along with that of each repeated instance. Tracks in
each repeated copy are constrained by a time linkage of 3 to
6 days end-to-start in this example.



Figure 7: The schedule view showing expanded requests (the list of the left) into tracks (visible in the Gantt view)

may be locked (fixed in place) and will not be subsequently
changed by the DSE. An example of the schedule view is
shown in Figure 7.

Pathfinder Deployment
In December 2008 we began a trial deployment to assess
how well the concepts described above would work when
exercised in a realistic scheduling context. The JPL Multi-
mission Resource Scheduling Services (MRSS) team is re-
sponsible for DSN scheduling for 20 different missions (out
of about 35 currently being actively scheduled to use DSN
resources). One team member started out using the soft-
ware, and based on positive feedback, the team deployed it
in February 2009 to each member. In its current usage mode,
each team member develops a set of scheduling requests for
their responsible subset of the overall set of MRSS missions.
These requests are then integrated by one team member, who
prepares an integrated schedule containing all missions for
which MRSS is responsible, for delivery to another organi-
zation to add additional missions.

The MRSS team’s experience with the DSE and
pathfinder GUI has been very positive — the most com-
pelling endorsement is that the team does not want to con-
sider falling back to the mode of operations before the soft-
ware was available. A comparison of the before and after
process is provided in Table 3. Among the positive features
are:

• repeated requests, and the ability to rapidly “clone” exist-
ing requests and edit them to create variations

• the immediate preview capability, providing instant feed-
back even for complex interval timings

• the ability to quickly create day-of-week based event in-
tervals to constrain scheduling

Before
(manual schedule
development)

After
(using request-driven
DSE)

integrated schedule
contained only the Mars
missions, Cassini, and
Spitzer Space Telescope

all 20 MRSS missions are
integrated into the
schedule

only DSN maintenance
and downtime and critical
activities were considered
when building the
integrated schedule

same, with the addition of
any other missions for
which requirements are
available

schedule was developed
manually, entered via
Excel macro

schedule requests are
created and stored, and
repeated and re-used from
week to week

Table 3: Comparison of before and after process based on
MRSS use of the DSE software



As of mid-March, the MRSS team has built and deliv-
ered 14 weeks of DSN schedule using the DSE test client.
The main shortcomings that have been identified center on
the simplifications noted above — there is not yet support
for multi-user, multi-antennas scheduling scenarios, which
still require significant manual intervention. Since the DSE
pathfinder GUI does not have extensive scheduling editing
capabilities, the DSE schedule is imported into TIGRAS for
a final set of interactive updates before delivery.

Future Work
The initial experience with the DSE has been positive, con-
firming most of the expectations that a combination of
an intelligent user interface, combined with user-focused
scheduling algorithms and processing, can make a request-
driven approach feasible. The next steps in DSE develop-
ment are to add multi-user and multi-antenna scheduling.
We plan to continue to use the pathfinder GUI to explore
ways to provide more efficiencies to users of the system, in-
cluding additional preview functionality. Some of the future
capabilities to incorporate include:

• “distribution” requirements, where it is important to apply
some global criteria to the track expansion, for example
to meet conditions like “during any given month, no more
than 75% of a particular mission’s tracks should be in one
hemisphere”

• ways to define and manage more complex flexibility
options, e.g. when there are dependencies among the
choices and it is not sufficient to simply provide sets of
parameters with value ranges

• support for exploring non-local tradeoffs, e.g. when it is
acceptable to reduce a track in one week, but only if it
can be restored to requested duration in a preceding or
following week

• providing end users with full control over what exactly
is relaxed, and in what order, when the DSE scheduling
algorithms are invoked

The DSE is a central element of the Service Scheduling Soft-
ware (S3) system that is currently in development. When
complete, S3 will provide collaboration and reporting tools
as well as scheduling tools, via a web-base architecture that
will make it available to all DSN users. The close collabora-
tion between end users and developers has been a key factor
in the progress made to date, and we expect this to continue
to be critically important as the system development pro-
gresses.

Acknowledgments
The research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

References
Bell, C. 1992. Scheduling deep space network data trans-
missions: A lagrangian relaxation approach. Technical re-
port, Jet Propulsion Laboratory.
Borden, C.; Wang, Y.-F.; and Fox, G. 1997. Planning and
scheduling user services for NASA’s deep space network.
In 1997 Int. Conf. on Planning and Scheduling for Space
Expl.
Calzolari, G.; Beck, T.; Doat, Y.; Unal, M.; Dreihahn, H.;
and Niezette, M. 2008. From the EMS concept to opera-
tions: First usage of automated planning and scheduling at
ESOC. In SpaceOps 2008.
Chien, S.; Hill, R.W., J.; Govindjee, A.; Wang, X.; Estlin,
T.; Griesel, M.; Lam, R.; and Fayyad, K. 1997. A hierar-
chical architecture for resource allocation, plan execution,
and revision for operation of a network of communications
antennas. In Proceedings IEEE International Conference
on Robotics and Automation.
Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; En-
gelhardt, B.; Mutz, D.; Estlin, T.; Smith, B.; Fisher, F.;
Barrett, T.; Stebbins, G.; and Tran, D. 2000. ASPEN - au-
tomating space mission operations using automated plan-
ning and scheduling. In SpaceOps 2000.
Clement, B. J., and Johnston, M. D. 2005. The deep space
network scheduling problem. In Innovative Applications of
Artificial Intelligence (IAAI). Pittsburgh, PA: AAAI Press.
Clement, B. J.; Johnston, M. D.; Tran, D.; and Schaffer,
S. R. 2008. Experience with a constraint and prefer-
ence language for DSN communications scheduling. In
ISAIRAS-08.
Fisher, F.; Chien, S.; Paal, L.; Law, E.; Golshan, N.; and
Stockett, M. 1998. An automated deep space communica-
tions station. In Proceedings IEEE Aerospace Conference.
Guillaume, A.; Lee, S.; Wang, Y.; Zheng, H.; Hovden, R.;
Chau, S.; Tung, Y.; and Terrile, R. 2007. Deep space net-
work scheduling using evolutionary computational meth-
ods. In 2007 IEEE Aerospace Conference, 1–6.
Imbriale, W. A. 2003. Large Antennas of the Deep Space
Network. Wiley.
Johnston, M. D., and Clement, B. J. 2005. Automating
deep space network scheduling and conflict resolution. In
ISAIRAS-05.
Kan, E.; Rosas, J.; and Vu, Q. 1996. Operations mission
planner - 26m user guide modified 1.0. Technical report,
Jet Propulsion Laboratory.


