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Abstract 

Scheduling area coverage operations for orbiting 
spacecraft can be tedious and developing efficient 
schedules can take time. Many spacecraft have the ability 
to image sub-sections of areas into tiles that can 
subsequently be combined. We show that if we leverage 
this capability, then a fairly straightforward technique 
can schedule coverage operations optimally and tractably. 
We apply our approach to imaging glacial areas as part of 
the Mission to Understand Ice Retreat mission concept 
analysis. 

1 Introduction 

Previously we have reported on the Eagle-Eye 
architecture for Earth-orbiting observation [5]. In this 
architecture we have a framing instrument that is affixed 
to a bus that can be moved (either by gimbal or by 
turning the spacecraft, depending on the specific flight 
architecture selected) as well as a mirror or other device 
that allows for small but fast observation of adjacent 
areas along the boresight of the telescope. Here we focus 
on planning area coverage observations for such a 
system. Note that this technique is valid for any 
instrument as long as the focal plane field of view is 
dividable into halves along each dimension. 

 
Our primary observation is that the telescope 

boresight can slew slowly while the mirror system 
maintains pointing on a specific field of view. This 
allows us to continually gather data (much like 
push-broom instruments) without needing to slew or 
settle, increasing the overall efficiency of the data 
collection. And since the telescope field of view is much 
larger than the imager field of view, we can divide the 
areas to be imaged (to a finite extent.) The approach we 
describe here requires us to divide the telescope fields of 
view into quarters, half along each dimension, and then 
produce a telescope imaging path consisting of an 
ordering of these quarters. This is equivalent to finding a 
Hamiltonian path on a grid-graph. 

2 Approach 

The technique is straightforward. After selecting a set 
of tiles that represent a desired coverage, divide the tiles 
and link each in concentric paths. Then stitch the paths 
together at the first availability. We prove that there 
always is a concentric path and that there always is a 
legal "stitching point" between each adjacent concentric 
path.  
2.1 Algorithm 

First, we assume that the area to cover is 
decomposable into a set of tiles that result in complete or 
adequate coverage, thus the input to the system is a set of 
tiles. Figure 1 shows an example set of tiles to be 
collected. The goal of finding a coverage path for the 
tiles is equivalent to finding a Hamiltonian path on a 
grid-graph. 

 

 
Figure 1. Tiles to be collected 



Second, we assume that these tiles can be subdivided 
both horizontally and vertically into subtiles. Figure 2 
shows our example collection of sub-divided tiles. We 
call the induced grid-graph an even grid-graph in that all 
rows and columns have even numbers of elements and 
all contiguously vertical or horizontal adjacencies 
contain an even number of vertices. 

Given this input, our goal is to select a path through 
the subtiles that visits each tile once and transitions from 
one tile to another either vertically or horizontally. In 
practice, other transitions are allowed, but considered 
suboptimal.  

 
Figure 2. Sub-tiles to be collected 

Let’s call this resultantOur approach provides paths 
that require no other types of transitions. We note that 
this is equivalent to finding a Hamiltonian path in an 
even grid-graph. 

Formally, given a grid-graph G = {V, E}, select a 
path from E that visits each v ∈ V once. The size of the 
path is |V| - 1. For notational simplicity, let’s consider 
each v ∈ V to be a cell that can be indexed, e.g., the 
existence of vi,j and vi+1,j would imply an edge in E 
between vi,j and vi+1,j, thus we need not consider the set of 
edges E and refer to adjacencies using index notation. 

Since we are using a grid graph that is the result of 
subdividing tiles, each vi,j where i is even (i mod 2 = 0) 

and j is even implies the existence of vertices vi+1,j, vi,j+1, 
and vi+1,j+1. 

We start by first decomposing the graph into a 
collection of cycles by iteratively constructing cycles 
from the outside-in. Each cycle is very simple to 
construct: choose a new label, find any un-labeled vertex 
that has at least one free adjacency (on the perimeter), 
and follow the cycle around the perimeter until it closes. 
Remove the cycle once it is completed, and cycle 
through the rest of the vertices. Figure 3 shows how our 
collection of sub-tiles can be decomposed into concentric 
cycles, and Figure 4 shows the final, labeled cycles after 
decomposition. In section 2.2, we prove that a cycle 
always exists. 

 

 
Figure 3. Decomposition into cycles 
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Figure 4. Final labeled cycles 

 
 
Once we have a collection of cycles, we need to 

stitch these together to form a path. Again, the procedure 
is straightforward: select pair of adjacent vertices on the 
outermost path. This is the entry point. One of the 
vertices is the first vertex in the path and the other is the 
last vertex. Then, choose any vertex in any cycle that has 
not yet been included in the solution path that is adjacent 
to a vertex that is in the solution. Follow the new cycle 
until two cycle-adjacent vertices v1 and v2 are found that 
are also grid-graph-adjacent with path-adjacent vertices 
w1 and w2. This is the stitching point. (In section 2.2 we 
show that there is always a stitching point.) 

Figure 5 shows how we iteratively (from the outside 
to the inside) stitch each cycle to the adjacent outer cycle. 
The bottom left path is the solution path. 

 
Figure 5. Stitching points after stitching. Orange 
indicates inner cycle adjacent vertices (before 

stitching) and yellow indicates outer cycle vertices 
(before stitching) 

 
2.2 Proof outlines 

Here we provide outlines of proofs meant to 
convince the reader of the completeness, correctness, and 
optimality of our technique. 

First, the problem at hand is the composition of a 
Hamiltonian cycle for an even grid-graph. 

Completeness (that all adjacent vertices are included 
in any solution) is addressed in that 1) no empty tile goes 
unlabeled, 2) all labeled tiles are part of some cycle that 
shares the same label, and 3) all cycles are stitched to 



containing cycles. If correctness holds, then 
completeness also holds. 

Correctness requires 1) that regardless of how many 
cyclic decompositions occur, the existence of an 
unlabeled vertex implies the existence of an as yet 
unlabeled cycle, and 2) that any two adjacent cycles have 
stitching points between them. 

Lemma 1: removing the outermost cycle from an 
even grid-graph results in an even grid-graph. 

Regardless of topology, all columns and rows contain 
even numbers of vertices. A cycle always removes 
symmetric vertices (top and bottom, right and left) of any 
contiguous series of vertices, thus the number of vertices 
in any column or row remain even. Since the defining 
characteristic of even grid-graphs is that all columns and 
rows have even numbers of vertices and all contiguous 
adjacencies aligned horizontally or vertically have even 
numbers of vertices, then the resultant grid-graph is 
even. 

Lemma 2: each cycle has at least 4 stitching points 
to a containing cycle. 

Because each cycle is constructed from an even 
grid-graph, the smallest would be a 4x4 graph. In this 
case, there exist 4 possible stitching points. If we add 
more adjacent cells, there will always be at least one top, 
left, right, and bottom cell. Because the cycles offset 
each other by 1 vertex both vertically and horizontally, it 
isn’t possible to align a “closed center” (an area where 
there is no gap but is covered by vertices of the same 
cycle on both sides) from one cycle with an adjacent 
cycle, thus there will always exist at least one available 
stitching point along the top, bottom, left, and right of the 
cycle. 

Correctness follows from Lemmas 1 and 2.  
The asymptotic size of the problem is the number of 

vertices in the problem (the number of edges is a 
constant factor of the number of vertices). Gathering 
cycles is linear in the number of vertices, as is finding 
and applying stitching points, thus the overall asymptotic 
complexity is linear in the problem size. Since we need 
to evaluate all vertices to produce a solution, the fastest 
any algorithm could perform is linearly, thus our solution 
is asymptotically optimal. 

3 Application 

We have implemented our approach as part of the 
Eagle Eye architecture. The Eagle Eye architecture is a 
combination of two automated planner schedulers for the 
specific purpose of performing observation planning 
operations for airborne and spacebourne collection 
systems. The two planner/schedulers are the ASPEN 

(Activity Scheduling and Planning Environment) [3] and 
CLASP (Compressed Large-scale Activity Scheduling 
and Planning system) [6]. ASPEN models provide the 
interface for adapters. CLASP is leveraged for its ability 
to calculate coverage statistics on orbital bodies and for 
its ready interface to the SPICE library [1], which 
provides spatial and orbital reasoning services. 

We have adapted the Eagle Eye architecture to the 
MUIR (proposed Mission to Understand Ice Retreat) 
domain [5]. MUIR’s mission concept is to mount a 
telescope on the ISS (International Space Station) and 
image various ice phenomena (glaciers, ice-sheets, etc.) 
to determine the change in ice volume over time as well 
as measure various factors that might contribute to this 
change. One scenario for MUIR is the imaging of a 
glacier during a pass, and one concept for MUIR 
included a mirror that could make small adjustments to 
the pointing of the telescope, allowing us to choose 
closely adjacent areas to image (thus providing us with 
the ability to subdivide our tiles.) 

The efficiency of the approach allows us to scan a 3 
kilometer by 15 kilometer irregular region during a 
single pass, as opposed to approaches where we slew and 
collect, which only allow for a 3 kilometer by 4 
kilometer region. 

4 Conclusions 

We have described a technique that leverages the 
flexibility of the instruments modeled by the Eagle-Eye 
architecture to accomplish tiling campaigns to collect 
data covering contiguous areas of interest. The technique 
is tractable (linear in the number of induced tiles) and 
optimal.  
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