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Abstract

Scheduling area coverage operations for orbiting

2 Approach

spacecraft can be tedious and developing efficient

schedules can take time. Many spacecraft havehiliya

The technique is straightforward. After selectingea

to image sub-sections of areas into tiles that canof tiles that represent a desired coverage, dithéetiles

subsequently be combined. We show that if we lgyera
this capability, then a fairly straightforward tedtue
can schedule coverage operations optimally andatrhc
We apply our approach to imaging glacial areasaasqi
the Mission to Understand Ice Retreat mission cphce
analysis.

1 Introduction

and link each in concentric paths. Then stitch ghths
together at the first availability. We prove thdiete
always is a concentric path and that there alwaya i
legal "stitching point" between each adjacent catree
path.
2.1 Algorithm

First, we assume that the area to cover is
decomposable into a set of tiles that result inglete or
adequate coverage, thus the input to the systanses of
tiles. Figure 1 shows an example set of tiles to be

Previously we have reported on the Eagle-Eyecollected. The goal of finding a coverage path toe

architecture for Earth-orbiting observation [5]. this
architecture we have a framing instrument thaffizexd

to a bus that can be moved (either by gimbal or by

turning the spacecraft, depending on the spedifjhtf
architecture selected) as well as a mirror or otleice
that allows for small but fast observation of aéjatc
areas along the boresight of the telescope. Herfooues
on planning area coverage observations for such a

system. Note that this technique is valid for any

instrument as long as the focal plane field of visw
dividable into halves along each dimension.

Our primary observation is that the telescope
boresight can slew slowly while the mirror system

maintains pointing on a specific field of view. §hi

allows us to continually gather data (much like
push-broom instruments) without needing to slew or

settle, increasing the overall efficiency of thetada
collection. And since the telescope field of viessmuch
larger than the imager field of view, we can divithe
areas to be imaged (to a finite extent.) The aptraee
describe here requires us to divide the telescigpesfof
view into quarters, half along each dimension, #reh

produce a telescope imaging path consisting of an

ordering of these quarters. This is equivalenindifg a
Hamiltonian path on a grid-graph.

tiles is equivalent to finding a Hamiltonian path a
grid-graph.

Figure 1. Tilesto be collected



Second, we assume that these tiles can be subdiivideandj is even implies the existence of vertiegs;, Vi1,
both horizontally and vertically into subtiles. Gig 2 andvisy js1.
shows our example collection of sub-divided tilg¢e We start by first decomposing the graph into a
call the induced grid-graph awen grid-graph in that all collection of cycles by iteratively constructing cbgs
rows and columns have even numbers of elements anffom the outside-in. Each cycle is very simple to
all contiguously vertical or horizontal adjacencies construct: choose a new label, find any un-labetstex
contain an even number of vertices. that has at least one free adjacency (on the ptine

Given this input, our goal is to select a pathtigto ~ and follow the cycle around the perimeter untildses.
the subtiles that visits each tile once and tramstfrom Remove the cycle once it is completed, and cycle
one tile to another either vertically or horizohtalln through the rest of the vertices. Figure 3 shows bar
practice, other transitions are allowed, but cosrsd collection of sub-tiles can be decomposed into eatric
suboptimal. cycles, and Figure 4 shows the final, labeled cyeliter

decomposition. In section 2.2, we prove that a eycl
always exists.
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Figure 2. Sub-tiles to be collected e T R B e e B e
Let’s call this resultantOur approach provides path 515 oh PR P P e e B e
that require no other types of transitions. We bt P a2 alal2] [alalalale alalalals
this is equivalent to finding a Hamiltonian path an 1235 3|a|z2]2]2|1| [1]2]3]3]3|3]|2|2]z2]2
even grid-graph_ 1022|233 |2|2|2]1 102|223 |3|2]2|2]|1
Formally, given a grid-grapl® = {V, E}, select a c0 [V FE P - | = )R T R ) e
path fromE that visits eaclv € V once. The size of the Tl Il Il G Il Il Il
. . . .. . 1 2 3 3 2 1 1 2 3 3 2 1
path is Y| - 1. For notational simplicity, let's consider T AP TERS PR
eachv € V to be a cell that can be indexed, e.g., the B EEE el 2
existence ofv;; and vi;;; would imply an edge irE 1]22]2]2]1 122221
betweerv;j andvi,;, thus we need not consider the set of NBRRRERE 1[af1]a]a]n
edge<E and refer to adjacencies using index notation. i i
Since we are using a grid graph that is the resfult 1t 1t

subdividing tiles, eachi; wherei is even { mod 2 = 0) Figure 3. Decomposition into cycles
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Figure 4. Final labeled cycles

Once we have a collection of cycles, we need to
stitch these together to form a path. Again, thecedure
is straightforward: select pair of adjacent vegiom the
outermost path. This is the entry point. One of the
vertices is the first vertex in the path and theeots the
last vertex. Then, choose any vertex in any cywi¢ has
not yet been included in the solution path thatdmcent
to a vertex that is in the solution. Follow the neycle
until two cycle-adjacent verticeg andv, are found that
are also grid-graph-adjacent with path-adjacentices
w; andw,. This is the stitching point. (In section 2.2 we
show that there is always a stitching point.)

Figure 5 shows how we iteratively (from the outside
to the inside) stitch each cycle to the adjacetgrocycle.
The bottom left path is the solution path.
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Figure 5. Sitching points after stitching. Orange
indicatesinner cycle adjacent vertices (before
stitching) and yellow indicates outer cycle vertices

(before stitching)

2.2 Proof outlines

Here we provide outlines of proofs meant to
convince the reader of the completeness, correstaes
optimality of our technique.

First, the problem at hand is the composition of a
Hamiltonian cycle for an even grid-graph.

Completeness (that all adjacent vertices are imdud
in any solution) is addressed in that 1) no emitygbes
unlabeled, 2) all labeled tiles are part of somelecyhat
shares the same label, and 3) all cycles are stlt¢h



containing cycles. If correctness holds, then (Activity Scheduling and Planning Environment) Ejd

completeness also holds. CLASP (Compressed Large-scale Activity Scheduling
Correctness requires 1) that regardless of how manyand Planning system) [6]. ASPEN models provide the

cyclic decompositions occur, the existence of aninterface for adapters. CLASP is leveraged foahsity

unlabeled vertex implies the existence of an as yetto calculate coverage statistics on orbital bodied for

unlabeled cycle, and 2) that any two adjacent sycleve
stitching points between them.

Lemma 1. removing the outermost cycle from an
even grid-graph results in an even grid-graph.

Regardless of topology, all columns and rows contai
even numbers of vertices. A cycle always removes
symmetric vertices (top and bottom, right and leftany
contiguous series of vertices, thus the numberdices
in any column or row remain even. Since the defjnin
characteristic of even grid-graphs is that all ouhs and
rows have even numbers of vertices and all contiguo
adjacencies aligned horizontally or vertically haxen
numbers of vertices, then the resultant grid-graph
even.

Lemma 2: each cycle has at least 4 stitching points
to a containing cycle.

its ready interface to the SPICE library [1], which
provides spatial and orbital reasoning services.

We have adapted the Eagle Eye architecture to the
MUIR (proposed Mission to Understand Ice Retreat)
domain [5]. MUIR’s mission concept is to mount a
telescope on the ISS (International Space Statwm)
image various ice phenomena (glaciers, ice-sheats,
to determine the change in ice volume over timevels
as measure various factors that might contributéhi®
change. One scenario for MUIR is the imaging of a
glacier during a pass, and one concept for MUIR
included a mirror that could make small adjustmeats
the pointing of the telescope, allowing us to cleoos
closely adjacent areas to image (thus providingvitls
the ability to subdivide our tiles.)

The efficiency of the approach allows us to scah a

Because each cycle is constructed from an everkilometer by 15 kilometer irregular region during a

grid-graph, the smallest would be a 4x4 graph.his t
case, there exist 4 possible stitching points. ¢ add
more adjacent cells, there will always be at least top,
left, right, and bottom cell. Because the cyclefseif
each other by 1 vertex both vertically and horiadigt it
isn't possible to align a “closed center” (an avetzere
there is no gap but is covered by vertices of th@es
cycle on both sides) from one cycle with an adjacen
cycle, thus there will always exist at least onailable
stitching point along the top, bottom, left, anghti of the
cycle.

Correctness follows from Lemmas 1 and 2.

The asymptotic size of the problem is the humber of
vertices in the problem (the number of edges is a
constant factor of the number of vertices). Gatigpri
cycles is linear in the number of vertices, asinglihg
and applying stitching points, thus the overallragtotic
complexity is linear in the problem size. Since mezd
to evaluate all vertices to produce a solution, fastest
any algorithm could perform is linearly, thus ootwion
is asymptotically optimal.

3 Application

We have implemented our approach as part of the2]

Eagle Eye architecture. The Eagle Eye architedsua
combination of two automated planner schedulershfer
specific purpose of performing observation planning
operations for airborne and spacebourne collection

systems. The two planner/schedulers are the ASPEN

single pass, as opposed to approaches where weastw
collect, which only allow for a 3 kilometer by 4
kilometer region.

4 Conclusions

We have described a technique that leverages the
flexibility of the instruments modeled by the Eafige
architecture to accomplish tiling campaigns to exll
data covering contiguous areas of interest. Thienigoe
is tractable (linear in the number of induced jilasd
optimal.
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