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Abstract
We describe a methodology for representing and
optimizing user preferences on plans. Our approach differs
from previous work on plan optimization in that we
employ a generalization of commonly occurring plan
quality metrics, providing an expressive preference
language. We introduce a domain independent algorithm
for incrementally improving the quality of feasible plans
with respect to preferences described in this language.
Finally, we experimentally show that plan quality can be
significantly increased with little additional modeling
effort for each domain.

Introduction   

Traditionally, AI planning has focused on generating
feasible plans that satisfy a set of goals. However, in
many domains it is insufficient to simply model the hard
constraints of the system. Numerous undesirable, yet
executable plans may exist which satisfy the goals. For
example, unnecessary movements may be arbitrarily
inserted into a robot’s plan, as long as it ends in the goal
position. In addition, strict feasibility constraints may be
too weak for most problems, but necessary for
completeness. For example, while it may be physically
possible to completely drain a robot’s battery, reasons of
risk and longevity will make it preferable to maintain a
certain level of charge. However, this preferred charge
level, if encoded as a hard constraint, would preclude
solutions where a full battery drain was necessary.
Feasible plans may have a continuous measure of quality
and only a subset may be considered acceptable. In the
robot example above, quality continuously improves for
plans with fewer movements and less battery drain. In an
over-constrained system, quality may improve as more
goals are satisfied. We need to be able to evaluate plan
variables at a finer granularity than simply as consistent
or violated. To achieve this, we build on the traditional
representation of discrete hard constraints and mandatory
goals to include continuous soft constraints (i.e.,
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preferences) and optional goals. In other words, we extend
the notion of what the plan must accomplish (and how) to
what we prefer the plan to accomplish (and how). In this
way, the user can specify which feasible solutions are
more desirable, establishing a basis for automatically
generating high quality plans.

In many NASA domains, the user can have a
complicated definition of plan quality. For example,
scientists typically would like to complete as many
experiments as possible within given windows of
opportunity. Other users, such as engineers, might have a
preference for fewer power cycles of a spacecraft
instrument in hopes of extending the life of the
instrument. Certain system states may be more desirable
than other states. For example, extending an arm of a
rover might make the rover less stable, suggesting a
preference to keep the arm stowed when not in use. Some
timing constraints may be flexible but also have a
preferred time. For example, a calibration may be most
useful immediately before an experiment, but still have
some utility up to five minutes earlier. As another
example, an experiment may have several different ways
of collecting data, each resulting with different levels of
data quality. We present a general representation of plan
quality that is capable of encoding a wide range of
preferences including the ones just described.

We implement our representation of plan quality in the
ASPEN planning and scheduling system (Fukunaga et al.
1997). In addition, we demonstrate our approach to plan
optimization using a generalization of a technique called
iterative repair (Minton and Johnston 1988; Zweben et al.
1994). In ASPEN, the main algorithm for generating
feasible plans is a local, early-commitment approach to
iterative repair (Rabideau et al. 1999). During repair, the
conflicts in the schedule are detected and addressed one at
a time until no conflicts exist, or a user-defined time limit
has been exceeded. A conflict is a violation of a plan
constraint, and can be resolved by making certain
modifications to the plan. The most common plan
modifications include moving an activity, adding a new
instance of an activity, and deleting an activity. For each
conflict, a domain-independent repair expert
automatically generates modifications that could
potentially repair the conflict.



We adopt a similar local, early-commitment, iterative
approach to optimization. During iterative optimization,
low scoring preferences are detected and addressed
individually until the maximum score is attained, or a
user-defined time limit has been exceeded. A preference
is a quality metric for a plan variable, and can be
improved by making modifications to the plan similar to
repair. For each preference, a domain-independent
improvement expert automatically generates
modifications that could potentially improve the
preference score. For example, minimizing tardiness is a
preference on the end time variables of activities and can
be improved by moving activities to earlier times.

The iterative optimization algorithm has many of the
same desirable properties as iterative repair. First, both
algorithms take advantage of previous planning by
starting with the current plan. Solutions may be disrupted
by manual modifications or by automatic updates from
unexpected differences detected during execution.
Repairing or improving the existing plan enables a fast
turn-around time when small changes create conflicts or
degrade plan quality. Second, local search algorithms do
not incur the overhead of maintaining intermediate plans
or past attempts1. This allows the planner to quickly try
many plan modifications for repairing conflicts or
improving quality. Indeed, local stochastic search
methods have been shown to be very effective for hard
planning problems (Kautz and Selman 1996). However,
unlike systematic search algorithms, local search cannot
guarantee that all possible combinations of plan
modifications will be explored or that unhelpful
modifications will not be retried. Finally, reasoning with
uninstantiated variables, such as activity start times and
resource usage, can increase the complexity of planning
systems (Wilkins 1988). The temporal relationships and
resource profiles of activities with instantiated variables
can be computed more efficiently. Least-commitment
techniques retain plan flexibility and can reduce the
number of search nodes, but the cost per search node can
be high. Further discussions with applications to
spacecraft commanding can be found in (Chien et al.
1998).

In the next section, we describe the ASPEN planning
model. Then, we describe an extension to this model for
representing plan quality. Next, we present one possible
algorithm for optimization that uses this representation.
Finally, we introduce four realistic NASA domains with
complicated quality metrics for which we have easily
encoded preferences and quickly improved plan quality.

The ASPEN Planning Model

There are many variables of a plan that must be
considered during the planning process. Some of these
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 Some success has been shown in storing a limited history, such as with

tabu lists (Mazure, Sais and Gregoire 1997).

variables play a role in defining the feasibility of the plan.
The set of plan constraints identifies these variables and
the values required for successful execution.

In ASPEN, we have adopted a planning model with an
explicit representation of constraints for time, resources
and states (Smith et al. 1998). Plan operators, called
activities, have a set of local variables including a start
time and duration. Activities may have a set of temporal
constraint variables, each specifying a minimum and
maximum separation between two activities in the plan.
Activities also share a number of global resources or state
variables. Local constraint variables may be defined in an
activity specifying the required value of a resource or
state variable for the activity. The combined effects of the
activities define the time-varying profiles (i.e., timelines)
for the values of the resources and state variables. Global
constraints can be defined for each timeline, limiting its
set of legal values. For resources, these are capacity
constraints. For state variables, the set of legal state
transitions can be specified. The ASPEN planning model
also includes a representation for activity hierarchies.
Activities can have a disjunctive set of decompositions,
each of which expands the activity into different set of
sub-activities. Each sub-activity may also have its own
decompositions. A local variable represents the currently
selected decomposition. Arbitrary functional relationships
can be expressed between any of the variables in the
activities. This allows ASPEN to make external calls to
special reasoning modules for calculating plan values, if
necessary.

Finally, ASPEN has an explicit representation of
mandatory and optional goals. Goals are simply activity
specifications that do not immediately appear in the plan.
A mandatory goal is a conflict until the activity has been
inserted into the plan (i.e., the goal is satisfied). Optional
goals are not considered conflicts but instead degrade plan
quality when not satisfied.

Representing Plan Quality

We define preferences as quality metrics for variables in
complete plans. Preferences provide a mechanism for
specifying which plan variables are relevant to plan
quality. Certain values of these variables are preferred
over others, without regard for legality. Variables for
preferences may be selected from local variables of
activities or from global variables representing features of
the plan as a whole. We define a set of preference classes
that directly corresponds to the set of plan variable
classes.

Figure 1: Example preferences in ASPEN.

Prefer linearly less order wait_time
Prefer linearly more observation
  occurrences between 1 and 30 weighted 10
Prefer linearly more battery min value
Prefer linearly more earth_point duration



Preference Variables
To better understand what types of preferences are
included in our semantics, we must describe the types of
plan variables that can contribute to plan quality. We
define five basic types:

• local activity variable
• activity/goal count
• resource/state variable
• resource/state change count
• state duration
An activity variable preference indicates a ranking for

the values of a local variable in an activity instance in the
plan. Local activity variables include domain-specific
variables as well as internal variables for start time, end
time, duration, resource usage, temporal distance from
other activities, and selected decomposition. Typically, a
preference is made for variables with a particular name
defined in a particular type of activity. For example,
minimizing tardiness in (Williamson and Hanks 1994;
Miyashita and Sycara 1995) is a preference on the end
times of activities that fulfill factory orders. Minimizing
work in process (WIP) is a preference on the distance
between the order request and order fulfillment activities
(see Figure 1). Other preferences can score the plan based
on the number of existing activities of specific types (i.e.,
activity count). Or, one can make a general preference for
satisfying more of the optional goals. In a typical
spacecraft domain, scientists prefer to include as many
observation activities as possible in a limited window of
opportunity.

A preference can also be made for certain values of a
global resource or state variable. A resource/state variable
preference ranks the set of resource/state values that exist
within the planning horizon. For example, a preference
can be made for maximizing the minimum value of a
battery over time. Other preferences can score the plan
based on the number changes occurring on a
resource/state variable (i.e., resource/state change count).
This type of preference could be used to limit the number
of power spikes on the battery. Finally, a preference can
be made on the duration of a particular state on a state
variable. Pointing a spacecraft antenna towards earth, for
example, is preferred when the spacecraft is not
constrained to any other state.

Mapping to Quality Metrics
A preference is a mapping from a plan variable to a
quality metric (i.e., score) in the interval [0,1] (see Figure
2). Specifically, a preference indicates whether the score
is monotonically increasing or decreasing with respect to
the plan variable within certain bounds1. The user can also
specify that the score increases as the difference with a
given fixed value decreases. In other words, the high
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score is centered on a value selected from the domain of
the variable. From this high-level specification, mapping
functions are generated that take preference variables as
arguments and return real-valued scores.

Each preference includes an upper and lower bound to
indicate the range of the variable for which the score
increases or decreases. Any values outside this range
produce a score of either zero or one. For example,
anything over 90% battery charge may be
indistinguishable in terms of quality. Therefore, a
preference can be defined as increasing with minimum
charge and reaching a maximum score at 90% charge.
Each preference also includes a weight for specifying the
relative importance of the preference to overall plan
quality. The score of a plan is computed as the weighted
average of scores for plan variables with preferences.

Aggregate Preferences
An aggregate preference is defined for many plan
variables, and can either score each variable
independently, or score the result of applying a function
to the variables. If the preference scores each variable,
then the scores are weighted equally and averaged. The
built-in functions that can be used in aggregate
preferences include average2, sum, minimum, and
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Figure 2: a) Mapping the end time of an activity to a score.
This implements a preference for minimizing tardiness of an
activity. The deadline is at the sixth hour and the score
decreases to zero one hour after the deadline. b) Mapping
the distance between two activities to a score centered on a
given value. This implements a preference for maintaining a
10 minute separation with a ±2 minute tolerance.

a)

b)



maximum. These functions constitute the set of functions
most commonly observed in preferences from various
domains. For example, minimizing makespan is a
preference on the maximum end time of all activities in
the schedule. The specified function is computed for the
current set of plan variables, and the result is mapped to a
score for the preference.

Improving Plan Quality

Preferences allow us to define quality metrics for
evaluating feasible plans and making quantitative
distinctions between different plans. The next step is to
use these preferences to produce high quality plans.
Preferences can be used as heuristics when generating a
feasible plan or to directly improve the quality of an
existing plan. We interleave repair-based planning with
preference-driven, incremental optimization.

Local Improvement Experts
In addition to establishing quality metrics, preferences can
provide insight into how to improve plan quality. We
define domain-independent improvement experts to aid in
optimization (see Figure 3). Improvement experts are
based solely on the class of preference (and variable) for
which it is constructed. An instance of an expert uses the
preference specification to calculate plan modifications
that will improve the score for the given preference and
current plan. In other words, an expert is a link between
changes in the plan and the change in quality. For
example, if less resource usage were preferred, expert
improvements would include deleting an activity that is
currently using the resource. It is a local expert, however,
and does not guarantee an increase in overall plan quality.
Improvement experts provide a framework for
optimization algorithms, defining the search space of
possible improvements. We define a separate class of
improvement expert for each class of preference.

Local activity variable expert. One class of expert is
used for improving preferences on local activity variables.
The most obvious modification for improving this
preference is to change the value of the local variable.
The expert only considers variables that are currently
contributing to the low score. For example, only the end
time of activity a2 in Figure 3 can be changed to improve
the score for this preference. If score is a decreasing
function of the variable, then making an improvement
requires assigning a value less than its current value.
Likewise, we must assign a value greater than its current
value to improve an increasing preference. In cases where
the variable is the start or end time of the activity,
assigning a value implies moving the activity to earlier or
later times. Expert modifications also include creating
activities with high scoring values or deleting activities
with low scoring values for the specified variable.

Activity/goal count expert. A different class of
improvement expert is used for preferences on the number

of activities/goals. For a given preference of this class,
there is only one expert modification. When the
preference is for more occurrences of a goal/activity,
creating new activities is the only beneficial modification.
When the preference is for fewer occurrences, deleting
existing activities is the only improvement.

Resource/state variable expert. Another class of
expert improves preference scores for the values of
resources or state variables. Only activities that use the
resource or state variable are considered. For a high
resource preference, the expert selects activities that
increase the resource when adding and activities that
decrease the resource when deleting. Just the opposite is
true for low resource preferences. When moving, if the
preference is for a higher minimum resource value,
activities that decrease the resource during this time can
be moved away from the minimum value. In Figure 3,
activities a3 and a4 both contribute to the low minimum
battery level. If the preference is for a lower maximum
resource value, activities that increase the resource during
this time can be moved away from the maximum value.
Similar (but probably less useful) cases exist for higher
maximum and lower minimum resource values. Moving
an activity does not significantly change the average
resource value and therefore is not considered for
preferences on averages.

Resource/state change count expert. A simpler class
of expert is used for improving scores of preferences on
the number of times a resource or state variable changes
over time. Adding activities that use the resource or state
variable will increase the number of changes. Deleting
will decreases the number of changes. Because each
activity makes a constant number of changes on a

Preference:
  less min battery level
Expert:
  who? a3, a4, typeof(a5)
  what? delete, create
  where? < t2 or > t3
  …

a1

a4 a5a3

a2

battery
level

Preference:
  earlier end time
Expert:
  who? a2
  what? move, delete, …
  where? < t3
  …

t2 t3t1t0 t4

time

Figure 3: Local improvement experts.



resource/state variable, moving has no impact on the
change count.

State duration expert. The last class of improvement
expert works on state duration preferences. Activities that
change the state variable can be created, deleted, or
moved in order to change the amount of time planned in a
particular state. When the preference is for a longer
duration, activities that change to the specified state can
be created at times when the variable is in a different
state. Conversely, when the preference is for a shorter
duration, activities that change to any other state can be
created at times when the variable is in the specified state.
For example, an activity that switches an instrument off
can shorten times where the instrument has been left on.
Similar reasoning is used when deleting or moving
activities.

Monotonic Preference Assumption
In order to make improvement calculations tractable, we
make a monotonic preference assumption, requiring each
mapping from plan variable to quality metric to either be
consistently increasing or decreasing within a given range
of the variable. For preferences centered on a value, the
score must increase for values less than the specified
center value, and decrease for values greater than the
center value. In this way, the problem can be restated as
simply identifying modifications that increase or decrease
the current values of plan variables participating in
preferences. For example, if a variable with integer
domain [1,10] and current value 4 has a decreasing
preference, then only values in the range [1,3] will
increase the score for this preference.

Iterative Optimization
The full set of potential plan improvements can be quite
large. Once the expert has calculated this set, we search
for more optimal plans by iteratively selecting and
making improvements (see Figure 4). We call this
technique iterative optimization because of its similarity
to iterative repair techniques used for repairing plan
conflicts (i.e., constraint violations). More specifically,
the iterative optimization algorithm first selects a
preference from the list of low-scoring preferences.
Typical heuristics for this decision include selecting a
preference with one of the lowest scores or one with the
most potential gain (weight * (1 – score)). Next, the
algorithm must decide which type of modification to
perform for the selected preference.

We allow several types of plan modifications in
ASPEN. New activities can be instantiated from types
defined in the domain, scheduled activities can be moved
to different time or simply deleted, and local variables in
activities can be changed. For each type of modification,
there are additional decisions that must be made before
applying the modification. When creating a new activity,
the activity type must be selected and values must be
assigned to variables in the new activity instance. When

moving, an existing activity and a new start time must be
selected such that the resulting preference score is
increased.

As an example, consider a preference for a high
minimum resource availability. The preference expert
would find activity types that provide the resource and
existing activity instances that consume the resource at
the time of minimum availability. The expert would also
suggest adding the provider at the time of minimum
availability or moving the consumer to any other time. In
short, the improvement experts provide information as to
which alternatives for each decision are useful for
optimization.

After making a local improvement, the resulting plan
may not be optimal. The iterative optimization algorithm
continues by selecting another preference, and repeating
the improvement process. After each improvement, the
resulting overall score is compared with the best score
achieved so far. If the current score exceeds the best
score, the current plan is saved. The algorithm halts when
the maximum score is attained, or when a specified time
limit is reached. If an optimal plan was not found, the
saved plan with the best score is returned.

Maintaining Feasibility
When making modifications during iterative optimization,
a few simple, domain-independent heuristics are used to
avoid violating hard constraints. However, some
improvements may require creating new conflicts.
Adhering to the plan constraints may be too restrictive,
precluding modifications necessary for improving quality.
Therefore, the iterative optimization algorithm may create
infeasible intermediate plans while searching for an
optimal plan. However, because it is unknown how the
plan will change to achieve feasibility, we do not attempt
to define quality for inconsistent plans. Plans with
violations are assigned the minimum possible score and

Iterative Optimize (T)
Let P = Pbest  = current plan
Let S = Sbest  = score(P)
While (S <1 and time < T)

If conflicts exist, Then repair(T-time)
Else

Let Q = set of preferences with score < 1
q = choose(Q)
M = Eq(P) //get the set of modifications
m = choose(M)
P = m(P) // apply the chosen modification
S = score(P)
If (S > Sbest) // save if best-so-far

Sbest = S
Pbest = P

Return Pbest

Figure 4: The ASPEN optimization algorithm. Eq(P) returns
the set of modifications for plan P calculated by the expert E
for improving preference q.



the iterative repair algorithm is invoked to restore
feasibility before continuing with optimization.

Competing Objectives
The iterative optimization algorithm does not perform
strict hill-climbing. Since modifications are applied to
increase the score for a single preference, scores for other
preferences may have suffered and the overall score for
the plan may have decreased after a single iteration. This
suggests that a subset of the preferences represent
competing objectives. Although we focus on a single
preference at each step in optimization, we do not
necessarily maximize the preference score. We only
attempt to increase the score by stochastically choosing
one of the potential improvements. Therefore, we would
expect competing preferences with a large disparity to
eventually reach a compromise rather than thrash between
a high score for one and a low score for the other.

Continuous Improvements
During execution we may notice differences between
actual and expected values for activities or resources.
These differences may violate hard constraints or degrade
plan quality. The CASPER system (Chien et al. 1999) was
developed to continuously initiate and monitor the
execution of an ASPEN plan, updating the plan when
necessary. As the result of a plan update, CASPER uses
the iterative algorithms to fix new conflicts and improve
preference scores. In this way, CASPER provides
continuous planning and optimization during the course of
execution.

Experimental Results

We now describe our initial experiments with incremental
optimization on several NASA domains. An ASPEN
planning model was developed for each domain,
including user preferences on various plan features as well
as the typical activity definitions and hard constraints.
Each model required less than ten lines of text describing
the preferences in the ASPEN preference language. Then,
iterative optimization and repair were run on randomly
generated problem instances of three different levels of
difficulty. The problem difficulty has many factors
including the number of goals, the complexity of the
goals, and the length of goal opportunity windows.
Initially, there are no satisfied goals, and the algorithm
continues to do one of three things: 1) satisfy a goal by
adding the requested activity to the plan, 2) improve the
score for any of the other preferences, or 3) repair
conflicts created by 1 or 2.

Each problem was run on a Sun Sparc Ultra-60. After
five minutes of planning and optimization, the saved plan
with the maximum overall score is reloaded and the
relevant data is recorded. Results from each problem size
were averaged over 100 runs and are shown in the left-
hand column under each problem size in the tables.

Approximate “optimal” values were manually estimated
for comparison and are shown in the right-hand column
under each problem size in the tables1. It is important to
note that the “optimal” values were estimated for each
preference in isolation. In other words, each represents the
best value that we can hope for even if all other
preferences were ignored. Given this, most values
approach the “optimal” value within reason.

New Millennium ST-4
ST-4 is a proposed spacecraft designed to land on a
comet, mine core samples of the surface, and return a
sample to earth. The model has 6 shared resources, 6 state
variables, and 22 activity types. Resources and states
include a battery, bus power, communications, drill
location, drill state, 2 oven states for the primary and
backup ovens, camera state, and RAM. There are two
activity groups that correspond to different types of
experiments: mining and analyzing a sample, and taking a
picture. There is a downlink activity type that replenishes
the RAM buffer by transmitting data to earth. Each ST-4
problem instance includes fixed profile that represents the
comet-landed phase of the mission with randomly
generated oven failures. Each problem also includes
requests for mining and picture experiments at random
start times.

The ST-4 model includes preferences for: more science
goals, using the primary oven, higher minimum battery
level, fewer downlinks, later downlinks (so they might
transmit more data), fewer drill operations, and fewer
oven operations. Interactions come from science goals
lowering the battery level and requiring a downlink when
the RAM buffer is full.

Table 1 gives the results for the average values for each
of the preference variables in the best ST-4 plan. The
“goal count” refers to the average number of satisfied
goals versus the average number of requested goals. The
second row gives the percent of goals that use the backup
oven. The backup oven is required when the primary oven
fails or is oversubscribed. While the numbers show that
plans that use the primary oven are preferred, it is not
clear what minimum percent of goals must use the backup
oven. Therefore, these cells contain a dash (—) in the
table. The average number of downlinks planned is shown
in the third row while the average downlink amount is in
the fourth row. The downlink buffer holds 30MB and
each experiment uses 5MB, forcing a downlink after 6
experiments. In the best case, each downlink would
replenish all 30MB. The fifth row gives the number of
operations planned for the primary oven. Half of the
experiments require an oven, each of which may require 3
oven operations (preheat, heat, cool). Therefore, the
“optimal” value is calculated by multiplying 3 times the
average number of goals that use the primary oven (any
more would be unnecessary operations).
                                               
1 The complexity of the problems makes it difficult to define true optimal
plan values.



Figure 5 shows the performance of optimization in the
ST-4 domain. Only the change in score is important, as
the absolute score values are somewhat arbitrary. The
graphs for the other domains are similar and therefore
omitted.

Problem Size 8 goals 16 goals 24 goals
goal count 6.62 8 12.6 16 14.2 24
backup oven 0.05 — 0.13 — 0.22 —
downlinks 0.62 0.39 2.13 1.40 3.36 1.69
downlink amt 15.6 30 19.1 30 16.4 30
oven ops 10.3 9.43 17.5 16.4 17.1 16.6

Table 1: ST-4 results.

New Millennium EO-1
New Millennium Earth Observer 1 (EO-1) is an earth
imaging satellite featuring an advanced multi-spectral
imaging device. EO-1 mission operations consists of
managing spacecraft operability constraints (power,
thermal, pointing, buffers, consumables, telecomm, etc.)
and science goals (imaging surface targets within specific
observation parameters). One of the interesting constraints
involves the Solar Array Drive (SAD) which keeps the
solar arrays facing the sun. For a few minutes before and
during each data-take, the SAD must be locked to avoid
spacecraft jitter, which can corrupt data. The EO-1 model
consists of 14 resources, 10 state variables and total of 38
different activity types. Each EO-1 problem instance
includes a randomly generated, fixed profile that
represents typical sun and cloud patterns. Each problem
also includes randomly placed science requests for
observations and calibrations. The size of the problem
varies from 2 to 6 days, and for each day, four additional
observation and calibration goals are added.

The EO-1 model includes preferences for: more science
goals, more time with the SAD tracking the sun, fewer

changes of the SAD state, and less deviation from the
preferred separation of data-take and SAD locking
activities. The last preference has a high score centered on
a value because if the settling time is too small there will
be too much jitter, but if the separation is too large the
solar array power output will suffer.

Table 2 gives the results for the average values for each
of the preference variables in the best EO-1 plan. The
second row gives the number of hours planned for the
SAD in the “tracking” state while the third row gives the
number of SAD operations in the plan. In the best case,
the SAD would simply track the sun 24 hours a day.
However, the observations require a small amount of time
with the SAD locked, which requires one operation to
lock the SAD and one to return it to tracking mode. The
last row contains the average number of minutes between
each SAD lock activity and the subsequent data-take. The
desired separation is five minutes.

Problem Size 1 day 2 days 3 days
goal count 5.56 6 11.8 12 11.7 18
SAD tracking 23.8 24 47.8 48 71.7 72
SAD ops 4.23 4 8.27 8 8.15 8
SAD/data-take
separation

5.00 5 4.76 5 4.87 5

Table 2: EO-1 results.

Data-Chaser
Data-Chaser is a shuttle science payload that flew
onboard Space Shuttle Flight STS-85 in August 1997. The
model consists of 19 shared resources, 24 state variables,
and 72 activity types. Resources and states include shuttle
orientation, contamination state, 3 scientific instruments
(including apertures, relays, heaters, etc.), several RAM
buffers, tape storage, power (for all instruments/devices),
and downlink availability. Each Data-Chaser problem

Figure 5: a) The change in the score of the “ best-so-far”  plan for 8, 16 and 24 requested ST-4 goals. The final score is lower for
more difficult problems because a smaller percentage of the requested goals are satisfied. Also, the score increases more slowly for
the more difficult problems. b) The change in the individual preference scores for the 24 goal ST-4 problem. The preference for
satisfying goals is weighted higher, allowing optimization to somewhat lower scores for other preferences in order to increase the
goal preference. The scores quickly reach a stable state where the utility of adding a goal does not justify the decrease in other
quality metrics that is necessary to support the new goal.



instance includes a randomly generated, fixed profile that
represents shuttle orientation and contamination states.
We generate plans for 1 to 3 days of mission operations.
The number of randomly generated science requests is
based on the fixed profile and the number of days for the
given problem instance.

The Data-Chaser model includes preferences for: more
science goals (i.e., experiment data-takes), earlier data-
take start times, fewer relay changes, and less duration of
the relay “on” state. These preferences are interesting for
several reasons. First, data-takes cannot overlap and
require the relay to be in the “on” state. Therefore, more
data-takes will require a longer “on” state duration.
Second, shortening the duration of the “on” state might
require more changes of the state of the relay.

Table 3 gives the results for the average values for each
of the preference variables in the Data-Chaser plan with
the maximum overall score. The second row contains the
average number of changes of the relay state variable in
the plan. Experiments in the plan tend to be grouped
during windows of opportunity (approximately 1 per day).
Therefore, the approximate “optimal” number of relay
switches is twice the number of days (one turning the
relay on and one turning it off). The third row gives the
average amount of time (in hours) planned for the relay to
remain in the “on” state. The relay should stay on during
each window of opportunity and each window is
approximately 30 minutes long. Therefore, the “optimal”
duration is about 0.5 hours for every day of operations.
The values for goal and relay counts are somewhat
reasonable. It is unclear why resulting plans were so poor
with respect to the “on” duration preference (the relay
was left in the “on” state much longer than necessary).

Problem Size 1 day 2 days 3 days
goal count 5.88 6.66 9.14 13.0 13.1 23.1
relay count 3.26 2 7.21 4 8.98 6
“on” duration 18.5 0.5 12.3 1 16.3 1.5

Table 3: Data-Chaser results.

Rocky-7 Mars Rover
Rocky-7 is a prototype Mars rover for long-range
planetary science gathering. The model consists of 18
shared resources, 12 state variables and 32 activity types.
Resources and states include 3 digital cameras (at the
front, rear, and on a mast), a deployable mast, a shovel, a
spectrometer, solar arrays, batteries, and a RAM buffer.
There are five activity groups that correspond to different
types of science experiments: one for collecting
spectrometer readings, and four for taking images at a
location (a front image, a rear image, a panorama using
the mast, and a closeup image using the mast). Rover
problems are sized by the number of hours of daylight (all
operations require illuminated solar arrays). A series of
science goals are generated corresponding to the number
of hours of daylight, and the parameters for the goals are
randomly generated (such as target locations). For each
additional hour of daylight, ten additional goals are added

spread over two new locations. Repair heuristics include
traveling salesman heuristics, which attempt to order the
rover traversals such that the total distance traveled is
minimized.

The Rocky-7 model includes preferences for: more
science goals, less traversing, less time with the mast
deployed, fewer mast deploy and stow operations, and a
higher minimum battery level. This set also contains
interacting preferences. For example, adding science
activities will drain the battery and may require mast
operations and a rover traversal.

Table 4 gives the results for the average values for each
of the preference variables in the best Rocky-7 plan.
Again, the first row contains the number of satisfied goals
versus the number of requested goals. While the number
of satisfied goals does not significantly increase when
more goals are requested, the goals are spread across
more locations making the problem more difficult. The
second row contains the average number of traverses
made by the rover and the third row gives the average
number of minutes spent traversing. Each hour contains
goals at two different locations, which requires two rover
traverses. The rover is traveling one meter per minute
over a 20 square meter area. The minimum required
traversal time, however, is difficult to estimate and has
been omitted. The fourth row gives the number of minutes
planned for the mast in the “deployed” state while the
sixth row gives the number of mast operations in the plan.
The “optimal” number of mast operations is estimated as
two per location, one to deploy it for the goals and one to
stow it before the next traverse. At a minimum, the mast
would need to be deployed for six minutes at each
location. The last row gives the minimum battery level for
the plan. The maximum minimum level is estimated
assuming the battery is recharged after every operation
(which is quite optimistic considering the time required to
recharge).

Problem Size 1 hour 1.5 hours 2 hours
goal count 8.03 10 8.91 15 8.31 20
traverses 2.77 2 5.21 3 8.31 4
traversing 24.5 — 42.8 — 62.8 —
deployed 41.8 12 53.6 18 67.8 24
mast ops 5.78 4 12.3 6 22.8 8
battery level 20.9 51 20.5 51 22.0 51

Table 4: Rocky-7 results.

Related Work

Much of the recent work in plan optimization has been
looking at ways to integrate linear programming (LP)
techniques with symbolic AI and constraint propagation
(Baptiste, Le Pape, and Nuijten 1995; Hooker et al. 1999;
Kautz and Walser 1999; Vossen et al. 1999). Typically,
LP equations are used to represent numeric constraints
and objectives in conjunction with STRIPS-style planning
operators. While LP formulations have the advantage of
taking a global view of plan quality, they can be difficult



to develop and computationally expensive to solve when
including representations for state, resource, and temporal
constraints. Moreover, there is no sense of incremental
improvements. Slight changes in the problem
specification require a restart of optimization and may
result in a drastically different solution.

PYRRHUS (Williamson and Hanks 1994) is a partial-
order planner that has been extended to handle metric
resources, time and a utility model. Utility is defined as
achieving goals early and using a minimal amount of
resources. While we do not attempt to define utility on
incomplete plans, partial-order planners must evaluate the
utility of partial-plans in order to address optimization.
The PYRRHUS algorithm uses a branch-and-bound
search, discarding partial plans whose upper bound on
utility is less than the utility of the current best complete
plan. In order to compute the upper bound on utility of
partial plans, they require the representation to have an
overall utility function that is monotonically non-
increasing as refinements are made. This is significantly
more restrictive than our assumption, which only requires
that the individual components of utility be monotonic.
They define utility as a decreasing function of missed
deadlines and resource consumption. This is a
specialization of our utility model and is less applicable in
some domains. Spacecraft commanding problems, for
example, typically are more concerned with packing
science into limited time windows, rather than meeting
deadlines.

(Myers and Lee 1999) view the optimization problem
as providing a set of qualitatively different plans, which
can then be further refined by human planners. Plans are
generated with the SIPE-2 planner modified to produce a
good sampling along the various dimensions of quality.
This appears to be very useful for domains with a high
degree of interaction between quality metrics, or with
little understanding of the overall quality. Preferences and
their weights could be identified using a mixed-initiative
approach. Once quality is well-defined, however, it
becomes more desirable to find a single, high-quality
plan.

The CABINS (Miyashita and Sycara 1995) system uses
a similar iterative optimization algorithm to improve
complete but sub-optimal schedules. Here, case-based
reasoning (CBR) is used to learn control rules for
optimization problems. While CABINS focuses on an
individual activity when attempting modifications for
improvement, we focus on an individual quality metric.
But the main difference from our approach is that
preferences are stated for scheduling decisions rather than
for values of variables. In addition, preferences are
learned in a case acquisition phase, where the user
implicitly makes preferences by evaluating the problem
solving results. While the user is not required to supply
the set of objectives, the user must provide an explanation
of their evaluation, which includes weighting the impact
of the modification on each objective.

Our approach is a specialization of black-box
optimization techniques. Black-box algorithms proceed
with no knowledge of the quality function and iteratively
sample the quality surface using various search methods.
While these techniques are generic and can optimize
arbitrary quality functions, the large search space makes
both finding and applying the appropriate technique
prohibitively expensive. In contrast, we can pinpoint
moves that have potential for improvement, and vastly
prune the search space by simply assuming monotonicity
along individual dimensions of quality. While this
somewhat limits the expressiveness of quality, we do not
believe it to be a burden in many planning domains.

Discussion and Future Work

In general, our technique is more likely to perform well
on problems with local, non-interacting preferences. On
each iteration, our optimization algorithm reasons with
only a single preference (and a single parameter in an
aggregate preference). Improving preferences that require
simultaneous evaluation will be more difficult (i.e.,
require more search). For example, during makespan
minimization, moving one activity earlier in the sequence
may require another activity to finish later and increase
makespan. Although our preferences are general enough
to represent global problems such as makespan
minimization, iterative optimization is not likely to
perform as well as algorithms designed specifically for
this task.

In future work, we would like to compare the
performance of our approach to constraint relaxation
techniques. One could start over-constrained to the
preferred values and then relax the constraints, or start
under-constrained and then incrementally optimize toward
the preferred values. Initially, constraint relaxation may
be closer to optimal plans, but further from feasible ones.
Incremental optimization quickly finds a feasible plan,
but one that may be far from optimal. At this point it is
unclear which would perform better. We would also like
to make use of the preference experts in plan construction.
While constructing or repairing a plan, preference experts
might be able to give heuristic information about which
decisions are more likely to result in high quality plans.
Although the overall quality of an incomplete plan is not
well-defined, the relative quality of some decisions can be
computed.

Finally, while this paper focuses on iterative
optimization, much of our effort was in developing a
representation of plan quality and a framework for
optimization. This will facilitate the implementation of
more sophisticated search algorithms in future work. For
example, the “Squeaky Wheel” optimization algorithm
(Joslin and Clements 1999) could be implemented in our
framework. In this case, we might consider low-scoring
preferences as the “squeaky wheels” and move them
closer to the front of the queue of preferences waiting to
be optimized.



Conclusions

We have described an approach for representing and optimizing
user quality metrics (i.e., soft constraints) using generic
preferences for values of variables that occur in a plan. In our
approach, the set of local improvements can be efficiently
computed for each preference in a domain-independent fashion.
To accomplish this, the representation is restricted to monotonic
functions for mapping plan values to quality metrics. We have
demonstrated the feasibility of our approach by implementing
and empirically evaluating a local search algorithm for iterative
optimization on four different domains.
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