












“mirror_alignment” activities for aligning the mirrors
when needed. Activities of these types can be scheduled at
any time and last for a particular duration.

Finally, we have modeled a set of high-level observation
goals for the Keck Interferometer. These goals are
eventually detailed into lower level requests for particular
resources and states at particular times. At the highest level,
we have activities that represent the science experiments
(described earlier) for Exozodiacal Dust Measurement, Hot
Jupiter Detection, and Astrometric Exoplanet Detection. The
Exozodiacal Dust Measurement activity decomposes into

interferometry activities that uses the two main telescopes
and the nulling combiner. The Hot Jupiter Detection activity
also decomposes into interferometry activities using the two
main telescopes, but instead has a parameter for indicating
which combiner to use. Finally, the Astrometric Exoplanet
Detection activity decomposes into astrometry activities that
use two of the four outrigger telescopes. Each of the goal
activities has parameters for specifying the sky target at
which to perform the experiment. Moreover, each goal
places requirements on the pointing, mirror alignment, and
mirror health of the relevant telescopes for the duration of
the experiment.

Figure 4 – ASPEN GUI for a hypothetical Keck 3-night observation schedule.



Once all of the model components are specified, we are now
ready to generate observation plans for the Keck
Interferometer (see Figure 4). Whether generated manually
or automatically, all model constraints will be monitored and
conflicts will be flagged. For example, we have
automatically generated a three-night plan from an initial
request of nine science experiments (three per night). After
making the goal requests, conflicts exist from the various
goal requirements for pointing, etc. Using the iterative repair
algorithm, conflicts were resolved until none remained. For
example, adding target search activities satisfied the
pointing requirement but violated the mirror alignment
requirement. The repair algorithm would then add mirror
alignment activities to re-align the mirrors after the target
search but before the experiment. The algorithm continued
this way, finishing with a valid plan of 220 activities.

KI Preference Model

While the repaired plan satisfied all of the hard constraints,
it would not be considered a high quality plan. In order to
define plan quality, and subsequently optimize plans, we
need to state a set of preferences for KI operations. First, the
most common preference is one that prefers more science
experiments. While the original request had nine
experiments, it is possible that more could fit in the three-
night plan. The user can make optional requests for
additional science experiments. The corresponding
preference will evaluate to a higher score when the plan
contains more of the optional experiments. Other
preferences are for smaller start times for activities. These
make sure experiments are completed as soon as possible,
within the requested start time window. Still more
preferences are for fewer state changes on the pointing and
alignment state variables. These keep the telescope and
mirror movements at a minimum.

Now that we have the preference model defined, we can use
the iterative optimization algorithm to improve the plan.
Each preference is evaluated to a score between 0 and 1,
with 1 being the highest score. These individual scores are
then weighed and averaged into an overall score for the
plan. The iterative optimization algorithm selects and
improves one of the preferences until all have a score of one
or a time limit has been exceeded. For example, it will
delete unnecessary alignment activities to improve the score
for the preference for fewer alignment state changes. It will
also move activities to earlier start times (while avoiding
conflicts) to improve other preferences.

KI Continuous Planning Interface

Finally, we have developed the required interface between
the CASPER continuous planner and a KI simulator. Most
of the code for the interface and sim were automatically
generated from the ASPEN model. The generated sim is a
discrete event simulator that simulates the execution of
activities and the evolution of resources and state variables.

The generated sim executes activities as expected by the
planner. However, the user can augment the sim code to
simulate variations at execution time. The generated
interface links CASPER to the simulator. It is code that must
match a specific template required by CASPER. In
particular, it must have a function “commit(Activity)”
that, given a CASPER activity, translates the activity into a
simulator command. Because these commands are time
tagged, the simulator will queue the commands and pop
them off the queue at the appropriate time. In addition, the
state determination code translates the execution status into
plan updates when the simulated state deviates from the
planned state at any time. Whenever the plan updates result
in conflicts, the repair algorithm is automatically invoked to
fix them. Figure 5 shows the overall architecture.

To understand this process, we will step through an example
of a plan being executed by the simulator. First, we start
ASPEN and generate a feasible plan. Then, we start
CASPER, indicating the hostname and port number where
the ASPEN socket server is running. This will allow
CASPER to communicate with ASPEN. Next, we start the
simulator and indicate the host and port where CASPER is
running. This allows CASPER to communicate with the sim.
As the simulator runs, CASPER monitors the current time
reported by the sim. When the current time approaches the
start time of a planned activity (within a predefined delta),
CASPER reads the activity from ASPEN and calls the
“commit” interface function. For example, one of the first
planned activities for Keck is a “search_for_target”
activity. One minute before the activity’s start time,
CASPER calls “commit” on this activity to translate it into
a “search_for_target” simulator command with the
target parameter value (e.g., “t1”). The simulator pushes
this command in its queue. One minute later, the simulator
pops it off the queue and begins simulating the execution of
this command. For this command, the simulator simply waits

ASPEN

CASPER

Interface

Simulator

activities

commands

updates

sensor data

State Determination

Model
Initial State

Goalsupdates

updates

Preferences
updates

Figure 5 – ASPEN/CASPER architecture. Ovals
represent inputs required for each application. For
running CASPER, a baseline for the unshaded modules
(rectangles) can be generated from the model.








