
Area Coverage Planning with 3-axis Steerable, 2D Framing Sensors

Elly Shao and Amos Byon and Chris Davies and Evan Davis and
Russell Knight and Garett Lewellen and Michael Trowbridge and Steve Chien

Jet Propulsion Laboratory, California Institute of Technology
{elly.j.shao, amos.j.byon, christopher.j.davies, evan.w.davis,

russell.l.knight, michael.a.trowbridge, steve.a.chien}@jpl.nasa.gov

Abstract

Existing algorithms for Agile Earth Observing Satel-
lites((Lemâıtre et al. 2002)) were largely created for
1D line sensors that acquire images in linear swaths.
However, imaging satellites increasingly use 2D fram-
ing sensors (cameras) that capture discrete rectangu-
lar images. We describe tiling step-stare approaches
that are more suited to rectangular image footprints
than are 1D swath-based algorithms. Optimal area
planning for these 2D framing instruments is an NP-
complete problem and intractable for large areas, so
we present four approximation algorithms. Strategies
are compared against a prior 2D framing instrument
algorithm (Knight 2014) in three computational ex-
periments. The impact of observer agility on sched-
ule makespan is examined. Makespans vary more as
observer agility decreases toward a critical point, then
vary less after the critical point, suggesting a possible
problem phase transition.

Observer

Target

Footprint

Unobserved

Observed

Figure 1: Framing sensor observations (teal) of a target
area (white).

Introduction
Most existing area coverage algorithms for agile Earth-
observing satellites are intended for 1D sensors and
adapt poorly to 2D framing instruments with rectangu-
lar fields of view. These pushbroom algorithms contin-
uously sweep the sensor across the target, which would

Copyright © 2018, by the California Institute of Technol-
ogy. United States Government Sponsorship acknowledged.

Contact author: Michael Trowbridge

smear the image captured by a framing sensor. An
obvious alternative is to track a target point, which
informs a step-stare strategy where the target is de-
composed into a rectangular grid, and the sensor tracks
each grid point for the duration of an image capture
before moving on to the next(figure 2). The challenge

Pushbroom AEOS Track
Selection & Scheduling
problem (Lemaître
et al. 2002)

Step-stare
tiling concept

Figure 2: Comparison of pushbroom and step-stare.

in determining grid layout is that the the imager foot-
print (projection of instrument field of view onto body
surface) change as the observer flies past (figure 3).

Final
footprint

(+4 minutes)

Initial
footprint

t0t0+4 min

Spacecraft

p (target)

p

Figure 3: Imager footprint changes size and shape

We wish to image the entire target area while mini-
mizing makespan (schedule duration). The area visible
to the sensor is time dependent, and the cost to slew
between target points is time varying and asymmetric
(Lewellen et al. 2017a). This paper discusses the diffi-
culty of this optimization problem, presents optimal so-
lution approximation algorithms, then evaluates them
in three computational experiments.

Figure 4: 1D (Lemâıtre et al. 2002) algorithm adapted
to use a 2D framing sensor, with sweep lines (blue line)
and image footprints (green). Only 81% of the target
(white) was satisfied

Related Work

Lemâıtre et al. present a swath-based Boustrophedon
(lawnmower) decomposition algorithm for area cover-
age with agile satellites (Lemâıtre et al. 2002). They
argue that the track selection problem is NP-hard, so
approximation algorithms are acceptable. The paper
assumes 1D sensors and does not discuss 2D sensors.

Our adaptation of their algorithm for 2D framing in-
struments performed poorly when slew rate was con-
strained to the slower readout times of 2D framing in-
struments. On our easiest test case1, the swath-based
algorithm did not cover the entire target (figure 4).

Knight identified area coverage planning for 2D fram-
ing instruments as NP-hard by analogy to finding a
Hamiltonian path through a grid-graph, then presented
a concentric ring (Milling) tiling algorithm (Knight
2014). While provably optimal for even grid-graphs, a
target polygon’s grid decomposition could be odd, pro-
ducing sub-optimal ring stitch points. The algorithm
subdivides grid tiles into either two or four sub-tiles,
which makes the graph even, but reduces area satis-
fied per image capture and increases makespan due to
overlapping imager footprints. This paper presents al-
gorithms that do not subdivide.

Formulation

Problem Statement

Choose observations (real-valued target points, rota-
tions, observation times) s.t. the union of all images
captured by those observations when projected onto the
target body (modeled as a triaxial ellipsoid) cover the
target great-circles polygon within a bounded temporal
interval (single overflight), subject to constraints, with
sufficient slew time between observations.

1GOLIAT/CICLOP CubeSat, using ON Semiconductor
AR0331 subwindowed to 16:3 aspect ratio (Semiconductor
Components Industries, LLC 2017)

Figure 5: Milling (Knight 2014) algorithm grid points
(connected by white line) and footprints (green). Sub-
division causes excessive overlap and some skipped tiles
that cover no target area (see edge crossing).

Nomenclature

p A point on the target body

(p1, . . . , pn) A great circles polygon on the target body
with n vertices

P A set of target great circles polygons

robs Position vector of the observer at a given time
t, determined by spacecraft orbit

rtgt Position vector of the observer’s imaging target
(center of camera field of view)

θ A rotation of the observer about its look vector
rlook(rtgt − robs)

t Time. t0 is the start time of the planning hori-
zon, tf is final time.

b A single observation that captures an image:
(robs, rtgt, θ, t)

B The set of all possible valid observations b

A The observation tour (schedule), an ordered list
of scheduled valid observations a

m Makespan of A, m = [min t ∈ A,max t ∈ A]

Tile A image footprint polygon: intersection of the
body surface and the observer’s field of view

g A tile corresponding to a scheduled observation

G The set of scheduled image footprint polygons.

Formal Problem Statement

Given a set P of polygons on the target body,

P = {(p1, p2, p3)i} (1)

the set B of all possible valid observations b that fall
within the planning horizon [t0, tf]

∀ (b = {rtgt, θ, t}) ∈ B, t0 < t < tf (2)

a function to create a polygon g from an observation,
representing the image footprint2

g ← footprint(rtgt, θ, t) (3)

2The image’s angular field of view depends on instrument
design

a Boolean valued function to check if a slew between
observations bi and bj is valid

Boolean← slewOk(bi, bj) (4)

Some tour A ⊆ B is valid iff

P ⊆ union ({footprint (ai) |i ∈ 1, 2, . . . , |A|}) (5)

and
|A|−1∧
i=1

slewOk (ai, ai+1) (6)

Constraints
The observation schedule A must have a makespan m
within the visibility window [tv0, tvf] where there is a
line of sight from the observer to the target:

m ⊆ [tv0, tvf] (7)

We enforce this by scoping B to the planning horizon
([t0, tf] ⊆ [tv0, tvf]). The geometric visibility window
[tv0, tvf] is a finite planning horizon.

Observations b ∈ B have minimum duration

∆tobs > 0 (8)

Observations cannot be concurrents. Observation tran-
sition time is strictly positive and depends on spacecraft
agility.

Geometric constraints are satisfied by restricting our
search to the visibility interval [tv0, tvf] determined
with existing software3.

Tractability of the Optimization Problem
OptFramePlan is the optimization formulation of the
framing instrument area coverage scheduling problem.
The goal is to find the shortest makespan schedule that
satisfies conditions 5 and 6, subject to the previously
listed constraints.

Theorem 1. Finding the makespan-optimal area cov-
erage plan for a space-based 2D framing instrument is
NP-complete.

Lemma 1.2 shows that the problem belongs to NP
because an arbitrary solution is polynomial-time veri-
fiable. Lemma 1.3 shows that the problem is at least
as hard as finding a Hamiltonian path in a grid graph,
which is NP-complete (Itai, Papadimitriou, and Szwar-
cfiter 1982).

Lemma 1.1. The size |A| of a solution schedule A ⊆ B
is bounded from above by

tf−t0
∆tobs

.

Proof. By contradiction/pigeon-hole principle. Assume

A contains
tf−t0
∆tobs

+ 1 observations. Neglecting transi-

tion costs between observations, the horizon [t0, tf] can

accommodate
tf−t0
∆tobs

non-overlapping observations. If

|A| = tf−t0
∆tobs

+ 1, then at least two observations overlap,
contradicting the problem constraints.

3Systems Toolkit (STK) (Analytical Graphics Inc.
2017), Satellite Orbit Analysis Platform (SOAP) (Stodden
and Galasso 1995), SPICE (Acton et al. 2016)

Lemma 1.2 (OptFramePlan ∈ NP). An arbitrary
area coverage plan for a space-based 2D framing instru-
ment is verifiable in polynomial time.

Proof. Lemma 1.1 proves that |A| = |G| is bounded
linearly by the planning horizon and minimum obser-
vation duration. A plan that contains |A| observations
has at most |A|−1 slews to validate using the constant-
time slewOk function. Validating constraint compli-
ance of each observation is also linear in |A| observa-
tions. Unioning G (a set of sets) has no worse than
O(|G|2) time complexity (Cormen et al. 2009).

Lemma 1.3 (HamiltonianPath ≤P OptFrame-
Plan). Finding the makespan-optimal area cover-
age plan for a space-based 2D framing instrument is
polynomial-time mappable onto an instance of finding a
Hamiltonian path in a grid graph.

Proof. Relax the makespan-optimal area coverage plan-
ning problem by discretizing the target polygons into a
uniform, target-fixed grid of points V . Omit rotation
about the look vector θ and set the planning horizon
short enough that skew may be neglected. Assume that
the observer can slew equally well in any direction, mak-
ing slew distance metric within the grid graph.

Define general grid graph Γ = {V,E}, where time
cost cij(t) between vi ∈ V to vj ∈ V via edge eij ∈ E is
a function of arrival time t, the sum of all previous costs
added to the tour start time. An edge eij exists only if
arrival time t ≤ tend ≤ tf , where tend is the end time
of the shortest known schedule. The makespan-optimal
area coverage plan for this target discretization will visit
each point in V once (i.e. be a Hamiltonian path).

OptFramePlan is NP-complete, so makespan-
optimal framing instrument scheduling of large areas
is expected to be intractable. Thus, we limit our dis-
cussion to approximation algorithms.

Approximation Planning Algorithms

This section presents four deterministic step-stare tiling
algorithms that approximate a makespan-optimal so-
lution to OptFramePlan. The algorithms differ in
when they commit the plan to target points rtgt, how
far ahead they plan and how they maintain the plan.

Sidewinder: Target-fixed Boustrophedon

Sidewinder is an adaptation of the Boustrophedon
(lawnmower) algorithm (Choset and Pignon 1998).
Construct a grid of ground points R with a 2D flood-
fill algorithm (Lee, Pan, and Chu 1987) and walk the
grid in alternating rows (algorithm 1). Each rtgt ∈ R is
fixed at plan start time t0 - but the other time-varying
elements of the observation tuple a are fixed at schedule
time t (algorithm 2).

Algorithm 1 Sidewinder planTour

function planSidewinderTour(P, t)
Tour ← ∅ . Planned tour
bBox← computeBoundingBox(P)
closestSide← findClosestSide(bBox, t)
Tiles← discretize(bBox)
bearing ← true . Alternates row direction
(xmin, xmax, ymin, ymax)← gridExtrema(Tiles)
if closestSide ∈ {NORTH,SOUTH} then

for i← ymin to ymax do
y ← ymax − i+ ymin

if closestSide = NORTH then
y ← i

end if
for j ← xmin to xmax do

x← xmax − j + xmin

if bearing then
x← j

end if
Tour.add(x, y)

end for
bearing ← ¬bearing

end for
else . East or West side is closest

for i← xmin to xmax do
x← xmax − i+ xmin

if closestSide = EAST then
x← i

end if
for j ← ymin to ymax do

y ← ymax − j + ymin

if bearing then
y = j

end if
Tour.add(x, y)

end for
bearing ← ¬bearing

end for
end if
return Tour

end function

Algorithm 2 Sidewinder

while P 6= ∅ do
Tour ← planSidewinderTour(P, γ, t)
while Tour 6= ∅ do

ai ← pop(Tour, t)
append ai to A
g ← footprint(ai)
P ← P − g
t← t+ ∆tobs+ slewDur(t, ai−1, ai)

end while
end while

Figure 6: Sidewinder: rotation and skew invalidate
the initial and second plans, prompting restarts by the
outer loop (while P 6= ∅).

Figure 7: Fixing the grid to the target at t0 causes gaps.

Replanning Sidewinder

Sidewinder commits grid points to target-fixed points
too early. Image footprints change, so the plan devel-
ops gaps over time (figure 7). Replanning Sidewinder
replans the tour after each move (algorithm 3) and only
commits a planning grid point to a target point rtgt at
schedule time t.

Algorithm 3 Replanning Sidewinder

while P 6= ∅ do
γi−1 ← pop(Tour) or center(P) if Tour = ∅
γ ← optimizeGridOrigin(γ(i−1)
Tour ← planSidewinderTour(P, γ, t)
ai ← pop(T, t)
append ai to A
g ← footprint(ai)
P ← P − g
t← t+ ∆tobs+ slewDur(t, ai−1, ai)

end while

Five pieces of plan state persist between replans: the
most recently scheduled point rtgt,i, next target point
rtgt,i+1, τrow ∈ {+,−}, τcol ∈ {+,−} and row align-
ment axis α ∈ {w, h}. The next grid origin point γi+1

is rtgt,i+1 and the algorithm usually4 scans row 0. When
rtgt,i discretizes to a row that is in the τrow direction
from rtgt,i+1, τcol is negated.

4If the next tour point is the final point in a row, and is
in the tour at γi−1 but out of the tour at γi, then the next

Figure 8: Replanning Sidewinder: adaptive row width

Current tile

Taboo tiles (blue)

Figure 9: Two taboo tiles (circled in blue).

Changing geometry can move target area into a previ-
ously visited grid cell (the blue circle of figure 9), requir-
ing a revisit of either a prior row (in the τrow direction),
or a different column in the current row (in the τcol di-
rection). Tiles requiring backwards moves are taboo.
The tour can cycle between two taboo tiles until the
opportunity interval is exhausted, so we remove taboo
tiles by shifting the row with 1d constrained local op-
timization (algorithm 4). Perturb the origin by δ until
the grid with origin γi+1 + δ has no taboo tiles. Mini-
mize δ in the τrow direction (shifting rows backward).

Online Frontier Repair

This strategy updates a global plan after each action.
The target is discretized into a grid using an 8-neighbor
flood-fill based on the O (n log n) stack flood-fill algo-
rithm (Lee, Pan, and Chu 1987). The initial plan (fig-
ure 10) is a rectangular Boustrophedon decomposition

point in the tour will belong to row 1, not 0.

Algorithm 4 Optimize Grid Origin γ(0,0)

T . set of taboo tiles in the grid
wtile . width of a tile
htile . height of a tile
α . grid alignment direction (w or h)
function optimizeGridOrigin(γ, τrow, τcol)

D ←
{[

0, wtile

2

)
, if α = w[

0, htile

2

)
, otherwise

. search domain

δα ← minimize(|δ|, δ ∈ D s.t. T |γ+δ = ∅)
return γ + δα

end function

(Choset and Pignon 1998). Tiles are converted from ob-

Figure 10: Initial plan (red arrows) from Online Fron-
tier Repair algorithm. Frontier tiles are yellowed.

server planning space to ground coordinates at schedule
time t (algorithm 5).

Algorithm 5 Online Frontier Repair

Plan Tour
while P 6= ∅ do

updateGrid(Tour, F,N,X)
remove(Tour, x ∈ X) . tiles we no longer need
insertCheapest(Tour, n ∈ N) . New tiles
ai ← pop(Tour, t)
append ai to A
g ← footprint(ai)
P ← P − g
t← t+ ∆tobs+ slewDur(t, ai−1, ai)

end while

Update the grid by seeding the flood-fill algorithm
with the prior iteration’s flood-fill result (algorithm 6).
In the best case, only the outer edge changes. In the
worst case, every tile is on the frontier, so updating is
as slow as creating a new discretization – O (|T | log |T |)
per update, where T is the set of grid points in the
tour. In practice, interior points are infrequently re-
evaluated.

We use the cheapest insertion heuristic (Rosenkrantz,
Stearns, and Lewis 1977) with a Manhattan distance
cost function when adding new tiles. Future work
should examine more sophisticated heuristics.

Figure 11: Online Frontier Repair. Note suboptimal
repairs on the right side (final leg).

Algorithm 6 Frontier Flood-fill Update

function updateGrid(Tour, F,N,X)
Cin ← ∅, Cout ← ∅ . closed lists
O ← F . Open list O starts as frontier set F
if O = ∅ then

O ← discretize(unsatisfied target vertices)
end if
S ← O . Seeds: initial open list
while O 6= ∅ do

o← O.pop()
if covers(o, targets) then

Cin ← o
membershipChanged← (o 3 Tour)

else
Cout ← o
membershipChanged← (o ∈ Tour)

end if
if membershipChanged ∨ (o ∈ S) then

for all n ∈ neighbors (o) do
if (n 3 Cin) ∧ (n 3 Cout) then

O.push (n)
end if

end for
end if

end while
N ← Cin − Tour . identify new tiles
X ← Tour ∩ Cout . tiles to remove from tour
F ← ∅ . rebuild frontier list
for all tile ∈ Tour do

if |neighbors(tile) ∩ Tour| < 8 then
F.push(tile)

end if
end for

end function

Algorithm 7 Grid Nibbler checkNeighbors

function checkNeighbors(r, t)
C ← getCardinalNeighbors(r, t) . ↑↓←→
D ← getDiagonalNeighbors(r, t) . ↙↖↗↘
best← argmax(score(c, t),c ∈ C)
if best did not finish a polygon then

x . Bias against diagonal neighbors
bestScore← score(best, t) ×x
for d in D do

if d finishes a polygon then
best← d

else if score(d, t) > bestScore then
best← d
bestScore← score(d, t)

end if
end for

end if
return best

end function

Local Grid Planning
This approach uses AI-inspired local planning with
globally-informed heuristics such as radial distance of

Figure 12: Grid Nibbler: Radial distance heuristic.

Algorithm 8 Nibbler

while P 6= ∅ do
best← checkNeighbors(prev)
if area(best, t) < ε then

newStart← closesttargetcorner
best← checkNeighbors(newStart, t)
if score(newStart, t) > score(best, t) then

best← newStart
end if

end if
a← makeObservation(best, t)
append ai to A
g ← footprint(ai)
P ← P − g
t← t+ ∆tobs+ slewDur(t, ai−1, ai)

end while

rtgt from center of target polygons P , area of P that
footprint g satisfies and number of polygons g elimi-
nated from P .

Consider a 3 × 3 grid of tiles centered on the tar-
get corner closest to the previous pointing. Score the
eight neighbors with some global heuristic, and add the
highest-scoring neighbor to the tour (algorithm 7). Nib-
ble (subtract) the imager footprint from the target. Re-
peat, centering the grid on the previous tour point, until
no target remains (algorithm 8). To prevent gridlock,
the previous direction is taboo.

Experiment Methodology

Each algorithm is used to schedule a target polygon in
five experiments, with these metrics:

• Completeness: fraction of target satisfied

• Schedule efficiency: shortest makespan (duration)

• Computational efficiency: lowest CPU runtime

• Memory consumption (minus fixed overhead)

In one experiment, we fix the orbit, imaging pay-
load and target, then vary observer agility to character-
ize the planning problem. The other experiment tests
algorithm performance over both target difficulty and
observer capability. Target difficulty is based on size
(226381 km2 vs 8181 km2, respectively). Both the hard

and easy targets have almost direct overflights during
the planning horizon.

Table 1: Hard and easy observer configurations

Easy Hard
Agility GOLIAT Commercial
Imager CICLOP THEIA
Orbit Altitude (km) 309 × 1441 5 615 6

Two key traits influence observer suitability for
minimum-makespan scheduling: agility and field of
view (FOV). The actual GOLIAT/CICLOP CubeSat
(Balan and Piso 2008; Dumitru 2006) is our capable
(easy) observer with a wide FOV and high agility (180°
slew in 30 seconds). A hypothetical7 observer with typ-
ical commercial imagery satellite orbit and agility (180°
slew in 120 seconds), but a smaller 1° FOV THEIA
framing imagery payload (Ellison et al. 2013) is our less
capable (hard) observer. Table 2 shows the instrument
models used in this experiment. Agility is modeled as
two-point linear interpolation of eigenaxis slew angle8

between targets, with fixed settle time.

Table 2: Imaging Instruments

CICLOP 9 THEIA 10

Shape Rectangular Rectangular
Horizontal FOV 5.73◦ 1◦

Vertical FOV 4.26◦ 1◦

Image duration 0.17s 1.0s

The experiments run on a 2015 Macbook Pro (2.6
GHz Intel Core i7, 16 GB RAM).

Results

Agility and Problem Difficulty

Figure 13 demonstrates agility ranging from that of
GOLIAT (upper limit) to ALL-STAR (lower limit),
with a band covering some typical commercial imagery
satellite agilities (Hutin 2009; Satellite Imaging Corpo-
ration 2017; MDA DigitalGlobe 2017). A commercial
imagery satellite bus should be capable of satisfying the
target area in a single overflight.

The problem is easier (more constrained) for less agile
spacecraft because they slew too slowly to cover the

5Elliptical. Obtained from GOLIAT tracking TLE (Ro-
manian Space Agency (ROSA) 2012).

6Circular. Reasonable when compared to commercial im-
agery satellite data sheets (Satellite Imaging Corporation
2017; MDA DigitalGlobe 2017).

7ALL-STAR is not agile enough and commercial imagery
satellites (Hutin 2009; Satellite Imaging Corporation 2017;
MDA DigitalGlobe 2017) do not use framing instruments

8The angle about an Euler rotation axis
9Data derived from (Dumitru 2006)

10Data obtained from (Ellison et al. 2013). No image
duration value published for THEIA, assuming 1s.

50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct
io
n
 C
o
m
p
le
te

GOLIAT ALL-STARCommercial

Online Frontier Repair

Grid nibbler (distance)

AEOS (Lemaître et al. 2002)

Milling (Knight 2014)

Replanning Sidewinder

Sidewinder

50 100 150 200 250 300
50

100

150

200

M
a
ke
sp
a
n
 [
se
c]

50 100 150 200 250 300

180 ◦ slew time [sec]

1
3
5
7
9

C
P
U
 T
im

e
 [
se
c]

Faster Slower

Figure 13: Performance under varying observer agilities

entire target. For a more agile spacecraft, it is easy
to find a valid solution, but harder to find the optimal
solution. Future work should examine the critical point
at the slow end of the commercial agility band (figure
13) as a possible problem phase transition.

Observer Capability vs. Target Difficulty

When the observer is very agile and has a large FOV,
path quality is less important. The easy/easy case
is degenerate because CICLOP can satisfy the target
with one image. In the easy observer, hard target case,
Grid Nibbler generates the shortest schedule by requir-
ing fewer images. The hard observer, easy target case
shows the opposite - optimizing global planners gen-
erate shorter schedules with efficient pathing, despite
requiring more images. We infer that lower agility
requires more efficient paths because slews are more
costly. With high agility, image number dominates path
quality.

No algorithm completely satisfied the hard/hard
case, even with multiple overflights. All algorithms con-
sumed 10× more CPU and memory. Both Grid Nib-
bler variants covered more target area than the other
algorithms.

Overall, Sidewinder used the least CPU time in all
cases and the least memory in 3 of the 4. Grid Nibbler
generally consumed more CPU time and memory than
the other algorithms, with Online Frontier Repair and
Replanning Sidewinder somewhere in between.

Overall Experiment Evaluation

All algorithms can produce admissible solutions, but no
single algorithm is universally best. We recommend a

Table 3: Comparison of algorithm performance for a cross-product of observer capability and target difficulty. Best
in test values are green, - denotes failure to produce a schedule.

Easy Observer (GOLIAT) Hard Observer (Hybrid)
Algorithm CPU RAM |m| |A| % CPU RAM |m| |A| %

E
a
sy

ta
rg

e
t Online Frontier Repair 2s 0.04MB 1s 1 100 4s 3.14MB 87s 54 100

Replanning Sidewinder 2s 0.08MB 2s 2 100 5s 2.11MB 89s 54 100
Milling (Knight 2014) 11s 0.04MB 11s 8 100 3s 0.37MB 107s 64 100

Sidewinder 2s 0.05MB 2s 2 100 2s 0.30MB 117s 63 100
Grid Nibbler (distance) 4s 0.05MB 1s 1 100 8s 4.13MB 118s 72 100

Grid Nibbler (area) 3s 0.05MB 1s 1 100 14s 3.71MB 109s 52 100

H
a
rd

ta
rg

e
t Online Frontier Repair 7s 3.21MB 87s 48 100 80s 22.80MB 39429s 387 32

Replanning Sidewinder 9s 2.19MB 81s 41 100 - - - - -
Milling (Knight 2014) 6s 0.42MB 118s 68 100 24s 3.80MB 39430s 343 30

Sidewinder 3s 0.22MB 74s 43 100 19s 2.30MB 39430s 389 18
Grid Nibbler (distance) 19s 4.52MB 96s 52 100 56s 23.20MB 39428s 391 34

Grid Nibbler (area) 20s 3.73MB 70s 39 100 146s 23.30MB 39429s 392 41

portfolio approach, where a higher level scheduler con-
siders a possible start time, then chooses the best algo-
rithm for each circumstance, by either executing each
algorithm and comparing makespans, or by evaluating a
heuristic estimate model of each algorithm’s makespan
(Lewellen et al. 2017b).

Discussion

Overall, fewer tour points |A| means shorter makespans
|m|. However, tour quality has a greater impact on the
less-agile observer: an efficient plan with more points
can outperform a bad plan with fewer points (compare
the hard observer/easy target instance of Online Fron-
tier Repair vs. Grid Nibbler (area) in table 3).

All algorithms have linear complexity in number
of tiles except for Online Frontier and Replanning
Sidewinder, which are quadratic. Algorithmic complex-
ity had negligible impact on schedule makespan and
CPU runtime in our tests because |A| was small.

These algorithms are only feasible on the upper end
of current CubeSat processor modules. The algorithms
themselves consume between 0.3 and 6.15 MB RAM,
but our hasty implementation adds an extra 470 MB
of non-algorithm memory overhead. This is too much
RAM for low end PIC-based CubeSat modules, but rea-
sonable for the 800 MHz CPU, 512 MB RAM Raspberry
Pi compute module in the AAReST MirrorSat CubeSat
(Underwood and Bridges 2015). Linearly scaling to an
800 MHz flight processor, our algorithms would require
an estimated 10-65 seconds runtime to produce 70-118
seconds of schedule, faster than real time.

Future Work

We constrained our experiments to targets that are en-
tirely within the field of regard. Larger targets could
be decomposed into neighborhoods associated with vis-
ibility windows to accommodate multiple overflights.

Grid Nibbler was comparable to Online Frontier Re-
pair, but was susceptible to dead ends due to its greedy

approach. If Grid Nibbler looked ahead, it could retain
the advantages of late commitment while avoiding dead
ends. Future work should examine local optimization
and relationships between next nibble heuristics.

Crude slew models were used for these experiments
because detailed performance models of imagery satel-
lites are typically not available to the public. Future
efforts should constrain maximum angular rates and ac-
celerations for slews, considering different agility about
different spacecraft-fixed axes.

Conclusion

The three axis steerable 2D framing instrument area
coverage planning problem was proven to be NP-
complete. Four approximation algorithms for an op-
timal framing instrument path were outlined and com-
pared in a computational experiment.

Naive approaches, such as applying pushbroom al-
gorithms to a framing instrument or choosing a fixed
target decomposition at start time, performed poorly.
Locally scoped or replanning algorithms produced the
shortest makespan schedules. Replanning Sidewinder
and Online Frontier performed the best across the
widest range of observer agilities. An algorithm from
this paper outperformed the existing 1D (Lemâıtre et
al. 2002) and Milling/Subdividable framing instrument
(Knight 2014) algorithms in all experiments.

If the spacecraft is extremely agile, or if the target
area is small relative to the imager footprint, the more
sophisticated algorithms offer few advantages over a
naive plan. The choice of algorithm matters most when
the observer has only marginally sufficient agility to at-
tempt a target.

Acknowledgments

The research was carried out at the Jet Propulsion Lab-
oratory, California Institute of Technology, under a con-
tract with the National Aeronautics and Space Admin-
istration.

References

Acton, C.; Bachman, N.; Semenov, B.; and Wright, E.
2016. Spice tools supporting planetary remote sensing.
ISPRS-International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences 357–
359.

Analytical Graphics Inc. 2017. Stk help/training part
4: Compute access. Web.

Balan, M., and Piso, M. 2008. GOLIAT project
overview. In 5th Annual CubeSat Developers’ Sum-
mer Workshop at the 22nd Annual AIAA/USU Confer-
ence on Small Satellites, Utah State University, Logan,
Utah.

Choset, H., and Pignon, P. 1998. Coverage path plan-
ning: the boustrophedon cellular decomposition. In
Field and Service Robotics, 203–209. Springer.

Cormen, T.; Leiserson, C.; Rivest, R.; and Stein, C.
2009. Introduction to Algorithms. MIT Press.

Dumitru, C. 2006. GOLIAT. In Proceedings of the
2006 Spring CubeSat Developers’ Workshop. Cal Poly
San Luis Obispo.

Ellison, J.; Massone, G.; Ela, N.; Goh, A.; Smith, L.;
Sobtzak, J.; Muralidharan, V.; Hayden, I.; Spetzler, B.;
Vente, G.; Lopez-Dayer, A.; Montoya, R.; McGehan,
Q.; Jeffries, T.; Cook, C.; and Campuzano, B. 2013.
ALL-STAR system integration review. Web.

Hutin, C. 2009. Pleaides meeting with ffg. Web.

Itai, A.; Papadimitriou, C. H.; and Szwarcfiter, J. L.
1982. Hamilton paths in grid graphs. SIAM Journal on
Computing 11(4):676–11. Copyright - Copyright] 1982
Society for Industrial and Applied Mathematics; Last
updated - 2012-02-06.

Knight, R. 2014. Area coverage planning for sub-
dividable framing instruments. In Proceedings of the
12th International Symposium on Artificial Intelli-
gence, Robotics and Automation in Space (i-SAIRAS
2014).

Lee, E. T.; Pan, Y.; and Chu, P. 1987. An algorithm
for region filling using two-dimensional grammars. In-
ternational journal of intelligent systems 2(3):255–263.

Lemâıtre, M.; Verfaillie, G.; Jouhaud, F.; Lachiver, J.-
M.; and Bataille, N. 2002. Selecting and scheduling
observations of agile satellites. Aerospace Science and
Technology 6:367–381.

Lewellen, G.; Davies, C.; Byon, A.; Knight, R.; Shao,
E.; Tran, D.; and Trowbridge, M. 2017a. A Hybrid
Traveling Salesman Problem - Squeaky Wheel Opti-
mization Planner for Earth Observational Scheduling.
In Chien, S., and Augenstein, S., eds., Proceedings
of the 10th International Workshop on Planning and
Scheduling for Space (IWPSS), 62–72.

Lewellen, G.; Trowbridge, M.; Shao, E.; Davies, C.;
and Knight, R. 2017b. Estimating Time to Image Ar-
eas with Steerable 2D Framing Sensors. In Chien, S.,
and Augenstein, S., eds., Proceedings of the 10th In-

ternational Workshop on Planning and Scheduling for
Space (IWPSS), 73–83.

MDA DigitalGlobe. 2017. WorldView-4 Data Sheet.
Web.

Romanian Space Agency (ROSA). 2012. GOLIAT
TLE. Web. http://www.goliat.ro/.

Rosenkrantz, D. J.; Stearns, R. E.; and Lewis, II, P. M.
1977. An analysis of several heuristics for the trav-
eling salesman problem. SIAM journal on computing
6(3):563–581.

Satellite Imaging Corporation. 2017. IKONO Satellite
Sensor. Web.

Semiconductor Components Industries, LLC. 2017.
AR0331 1/3Inch 3.1 Mp/Full HD Digital Image Sen-
sor, rev. 14 edition.

Stodden, D. Y., and Galasso, G. D. 1995. Space sys-
tem visualization and analysis using the satellite orbit
analysis program (soap). In 1995 IEEE Aerospace Ap-
plications Conference. Proceedings, number 0, 369–387
vol.1.

Underwood, C., and Bridges, C. 2015. AAReST
Spacecraft Update: Spacecraft Bus, Propulsion, ADCS,
SSTL-50 CoreSat, RDV/Docking, OBDH and Comms.
Web.

