Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

Temporal Brittleness Analysis of Task Networks for Planetary Rovers

Tiago Vaquero, Steve Chien, Jagriti Agrawal, Wayne Chi, Terrance Huntsberger
Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

Abstract

We propose a new method to analyze the temporal brittleness
of task networks, which allows the detection and enumera-
tion of activities that, with modest task execution duration
variation make the execution of the task network dynami-
cally uncontrollable. In this method, we introduce a metric
for measuring an activity brittleness — defined as the degree
of acceptable deviation of its nominal duration — and describe
how that measurement is mapped to task network structure.
Complementary to existing work on plan robustness analy-
sis which informs how likely a task network is to succeed
or not, the proposed analysis and metric go deeper to pin-
point the sources of potential brittleness due to temporal con-
straints and to focus either human designers and/or automated
task network generators (e.g. scheduler/planners) to address
sources of undesirable brittleness. We apply the approach to
a set of task networks (called sol types) in development for
NASA’s next planetary rover and present common patterns
that are sources of brittleness. These techniques are currently
under evaluation for potential use supporting operations of
the Mars 2020 rover.

Introduction

Temporal plans for agents that must deal with execution un-
certainty must be designed for execution robustness. Plane-
tary rovers, due to their interaction with a hard to predict en-
vironment match this type of problem. Planetary rover plans
must be carefully designed and generated on the ground to
allow successful execution of tasks while meeting all the re-
quired timing constraints and being safe at all times. Accu-
rately determining some of those timing constraints a priori,
specially activity duration, is quite challenging though due
to the the natural unpredictability of the environment (Ra-
bideau and Benowitz 2017; Chi et al. 2018).

The traditional approach used in planetary rover missions
is to add significant temporal margin for execution robust-
ness; however, this can hamper rover efficiency (Gaines et
al. 2016). Ideally we would use task networks that not only
are consistent and maximize the vehicle’s productivity, but
that are also robust to unexpected events and delays. As a
corollary, it is therefore critical to evaluate robustness and
identify activities and temporal constraints that cause brit-
tleness to temporal unpredictability.

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

564

Temporal constraint networks formalism have been used
for representing temporal plans and for evaluating their con-
sistency and robustness. They provide a useful framework
for modeling the various temporal requirements for dynamic
scheduling and execution in autonomous agents. Simple
Temporal Network (STN) (Dechter, Meiri, and Pearl 1991)
are largely used for representing task networks when no un-
certainty is present. Simple Temporal Constraints with Un-
certainty (STNU) (Vidal and Ghallab 1996) covers the case
in which temporal uncertainty exist and some events (time
points) are contingents. The Probabilistic Simple Tempo-
ral Networks (PSTN) (Fang, Yu, and Williams 2014) han-
dles the cases in which certain contingent constraints can
be modeled as probability functions. In planetary rover mis-
sions (Gaines et al. 2016), activity duration is hard to accu-
rately predict making STNU or PSTN quite applicable.

Existing work explores the aforementioned temporal for-
malism to assess and measure a task network robustness.
Traditional work evaluates flexibility as the aggregate slack
in temporal plans to measure how robust a STN is to
scheduling disturbance (deviation from nominal case) (Wil-
son et al. 2014). In principle, the more schedules the task
network permits due to time slack, the more adaptive an
agent would be to disturbance. More recently, robustness
is related to 1) the probability of a plan execution to suc-
ceed (Tsamardinos 2002; Brooks et al. 2015; Saint-Guillain
2019), 2) the greatest level of disturbance at which the task
network is still successfully executed (Cui et al. 2015), or
3) the ability of a plan to withstand unforeseen disturbances
(Lee, Ojha, and Boerkoel 2019). These robustness and flex-
ibility metrics are key to providing a sense of whether a
given task network would allow adaptation to disturbance.
Howeyver, the state-of-the-art methods somewhat fall short
on providing the intuition for why a task network is robust or
not, and the causes for such. For example, if a task network is
below a threshold of robustness, the natural question would
be: what specific activities and temporal constraints in the
task network are highly brittle to unpredictability and caus-
ing it to be temporally fragile. Deeply understanding how
brittle certain activities are to unpredictability and uncer-
tainty is fundamental to anticipating and addressing fragile
execution points that might jeopardize an entire mission.

This paper addresses the challenge of identifying what
are the activities that are most sensitive to temporal unpre-

dictability in a dynamic scheduling setting. We propose a
method to detect and enumerate activities that, with low lev-
els of uncertainty or delays, make the execution of the task
network dynamically uncontrollable, i.e. we cannot guaran-
tee that temporal constraints will not be violated throughout
execution. The goal is to provide a more informative analy-
sis that is complementary to existing robustness metrics, as
well as fundamental for guiding designers and planners to
increase robustness and address undesirable levels of brittle-
ness. More specifically, our contributions are the following:

e A novel method to analyze and measure temporal brit-
tleness of task networks, while detecting and ranking the
most brittle activities;

e A tool for mapping brittle activities to task network struc-
ture that aims to help designers and autonomous agents to
address undesirable levels of brittleness.

The paper is organized as follows. We first provide a back-
ground on the target application of the proposed analysis,
temporal constraint networks formalism, and how robust-
ness is currently measured in the literature. We then present
our brittleness analysis approach with key algorithms, as
well as experimental results. Finally, we conclude with some
insights and future directions.

Background

In this work we study brittleness analysis in the context of
NASA’s next planetary rover, the Mars 2020 (M2020) rover.
We derive task networks from M2020 sol types (Jet Propul-
sion Laboratory 2018), the current best available data on
expected rover operations during a Martian sol. Based on
(Chi et al. 2018), we define a task network as a set of ac-
tivities A = {a;(T'C, D)...an,(T'C, D)}, where: TC' is the
set of temporal constraints referring to the nominal duration
T'C} qur, earliest start time T'C}; 4, latest start time T'C; ¢,
and latest end time T°C}; j¢;; and D is the set of the activity’s
dependency constraints in the form of a; — ay, meaning a;
depends on ay, i.e. the end time of a; must be before the
start time of a;. All activities are mandatory and, therefore,
no disjunction is considered. An execution horizon H is also
defined for a task network, constraining when all the activ-
ities have to finish by. Herein, we focus on temporal con-
straints only, leaving resource constraints for future work.

The duration of planetary rovers activities can be quite
unpredictable (see (Gaines et al. 2016) for analysis of MSL
variability) and it is expected that M2020 will be similar
with uncertainty associated with T'C}; 4,,-. Knowledge about
activity duration is hard to get a priori, but partial knowl-
edge might exist in the form of lower and upper bounds
(set bounded) or a probability density function (pdf). Un-
der those assumptions and constraints, temporal constraint
networks are a suitable formalism to represent and analyze
the aforementioned M2020 task networks.

Temporal Constraint Networks

In this section we focus on simple temporal networks for-
malism (STN) and its main generalizations that covers the
scope of this work. A short review of the existing general-
izations of STNs can be found in (Frank 2018).

565

STN is one of the most popular formalisms for temporal
constraint reasoning (Dechter, Meiri, and Pearl 1991), which
is framed as a constraint satisfaction problem over time point
variables. An STN is a tuple (T, C), where T is a set of
time points (¢; € T = IR) and C is a set of constraints
c(t;, t;) that encode bounds on the differences between pairs
of time points in the form [; ; < (t; —t;) < u, 5, ie. (t; —
t;) € [lij,wi). A schedule is a specific assignment to all
time points variables 7. In our M2020 task network each
activity a; € A would have two corresponding time points
representing its start and end time. A special time point ¢y =
0 would represent the start time of the plan execution. An
earliest and latest start time constraint of an activity a; would
be encoded as a temporal constraint of the form (¢;_s¢qrt —
to) € [Ti,est, Ti,ist), while the constraint (¢;_end —ti_start) €
[T:.dur, T;,dur] Would represent the duration of the activity
being exactly T; gy

STNU covers the cases in which certain time points are
chosen by nature (Vidal and Ghallab 1996). An STNU is
also a tuple (T, C'), but the formalism partitions both sets T
and C as follows. T' = Ty U T¢, representing executable
time points (7r) determined by the agent and contingent
time points T which are assigned by nature. The constraints
setis C = Cr U C¢, in which Cg represents requirement
edges, controlled by the agent, and C represents contingent
edges that are not directly controlled. Such contingent edges
link an executable time point to a contingent time point, rep-
resenting uncertainty with respect to the time difference be-
tween the points, i.e., the exact value of (t; —t;) € [I; ;, u; ;]
is unknown prior to execution. In the M2020 task network,
all or some of activities” duration would be encoded as con-
tingent constraints in C, also meaning that their end time
points are in set T¢>. A schedule in this case is an assign-
ment to all time points in 7. Ideally, that schedule would
work for any situation imposed by nature, but in practice that
is very restrictive. Instead, we refer to a strategy that maps
observations to schedules during execution.

PSTN is a natural extension of STNUs in which a prob-
ability density functions are associated to contingent con-
straints, such as those representing uncertain activity du-
ration (Tsamardinos 2002; Fang, Yu, and Williams 2014;
Brooks et al. 2015; Santana et al. 2016). In this case, there
exists some knowledge about the uncertain duration of the
activity as opposed to no knowledge as in STNU. Herein, the
contingent constraints Cc are represented as (t;—t;) = X ;
where X ; is a random variable determined by a distribu-
tion, pdf (e.g., Normal distribution). Note that an STNU
can be generally represented as a PSTN by assuming that
all X; ; are uniform distributions. In the M2020 task net-
work case, the duration of certain rover activities (e.g., drive)
could be represented as a random variable. We consider
those particular cases in our analysis.

Consistency and Controllability Check

An STN is said to be consistent iff there exists a schedule (an
assignment to the time points) that satisfies all the temporal
constraints (Dechter, Meiri, and Pearl 1991). In order to test
for consistency, a traditional approach is to run a shortest

path algorithm such as Floyd-Warshall (Floyd 1962) which,
in the process of finding the tightest constraints implied by
C, is able to detect negative cycles. The existence of a neg-
ative cycle proves that the given temporal constraints are in-
consistent and no schedule can be generated.

In the STNU realm, consistency is not directly applied
due to the unpredictable assignment of contingent time
points and edges. An STNU relies instead on checking con-
trollability (Vidal and Ghallab 1996), which verifies whether
an agent can generate a valid/consistent schedule to any
situation that may arise in the external world. Controlla-
bility theory specifies different levels. An STN is said to
be strong controllable (Vidal and Ghallab 1996; Vidal and
Fargier 1999) iff there exists at least one “universal” sched-
ule that fits any situation: an assignment to the executable
time points is guaranteed to satisfy all temporal constraints
regardless of the nature’s assignments to contingent time
points. That is applicable in cases where agents have to com-
pute a schedule offline before making any observations and
don’t have the opportunity to adapt online. Nevertheless,
these cases are not usually practical in dynamic and unpre-
dictable environments. A more practical level would be dy-
namically controllable (Morris, Muscettola, and Vidal 2001;
Morris 2014), in which we check whether there is an execu-
tion strategy that at any time during execution, the partial
sequence executed so far is ensured to extend to a complete
solution whatever durations remain to be observed from the
contingent activities. In this case, an agent would be able to
choose online a valid assignment of executable time points
based on observed past contingent time points, without vio-
lating any future temporal constraints. Controllability anal-
ysis can also be applied in PSTN when bounds can be estab-
lished from the pdfs, which in turn incurs some risk of con-
tingent constraints falling out of those bounds (Fang, Yu, and
Williams 2014). We heavily used the controllability checks
in this work to support the analysis of how brittle activities in
the task network are wrt dynamic controllability when vary-
ing those contingent constraint bounds.

Robustness Analysis

State-of-the-art analysis has focused on quantifying how ro-
bust a temporal constraint network is with respect to distur-
bance (e.g., unforeseen delays). In (Cesta, Oddi, and Smith
1998; Wilson et al. 2014), robustness is computed by mea-
suring an STN flexibility: a metric that quantifies the ag-
gregate slack in the simple temporal network. In the naive
approach to compute a STN flexibility (flexy), Floyd-
Warshall’s all-pairs-shortest-path algorithm is first used to
infer the tightest bounds over the STN’s temporal constraints
C' and, consequently, the earliest time (est(t)) and latest
time (Ist(t)) for all time points t € T'. The flexibility for
scheduling time point ¢ would be defined as flexy(t)
Ist(t) — est(t). The flexibility of an STN S would be then
flexn(S) = Eierflexn(t) (e.g., flexy(S) = 100 secs).
Such a naive approach ignores possible correlations that
might exist between starting times of activities which might
result in over estimating flexibility (Lund et al. 2017). In or-
der to avoid double counting, Wilson et al. 2014 propose a
more suitable approach in which a linear program formula-

566

tion is used to maximize the sum of the time intervals each
time point ¢ can be scheduled, under temporal constraints C'.
More recently, STN problem is represented as a polyhedron
and the flexibility linked to its volume (Huang et al. 2018).
Although useful, it is hard to judge from the above metrics if
the amount of flexibility is enough in certain unpredictable
environments — with no uncertainty being consider it might
not imply robustness (Cui et al. 2015). Moreover, the above
methods do not inform where more flexibility is needed if
the metric value is below the acceptable range.

Cui et al. 2015 define robustness as the greatest level of
disturbance (delay) on an STNU at which it is still success-
fully executed. In this method, uncertainty is explicitly mod-
elled and considered to compute robustness. Computing ro-
bustness is framed as a linear constraint optimization prob-
lem to compute the maximum deviation from the nominal
case (i.e., width of the contingent bound) on any activity at
which the STNU is dynamically controllable. A particular
application of this approach is the maximum delay problem,
in which the goal is to maximize the minimum width of con-
tingent constraint intervals. The lower bound on the contin-
gent activity duration is set to the nominal duration and the
delay is the varying upper bound of the contingent interval.
That particular approach would result in a minimum allowed
delay in all contingent activities (e.g., all contingent activi-
ties can delay at least 10 minutes). If a PSTN is used instead,
the level of disturbance at which the schedule becomes no
longer dynamically controllable equates to the probability of
it breaking during execution. The same constraint optimiza-
tion problem framework applies in the probabilistic case, in
which the objective is to maximize the probability that all
contingent activity duration fall inside the chosen bounds.
The robustness metric in this case would be a probability of
execution success (e.g., a given PSTN is 97% robust).

In (Tsamardinos 2002; Brooks et al. 2015), robustness
is also quantified as the likelihood that a PSTN will be
executed successfully. Herein, a naive robustness measure,
Robustnessy, is computed by first using a shortest path
algorithm to determine the tightest bounds for each con-
tingent constraint ¢; ; € Cc; then it uses those bounds to
compute the area under the corresponding pdf f between
those bounds. Applying it to all contingent constraints,
the resulting naive metric would be Robustnessy
[lecce flu]7 fij(x)dz. The naive approach assumes no

correlation between the temporal constraints, and as before,
suffers over estimation. To account for interrelation, Brooks
et al. (2015) propose a Monte Carlo approach in which the
execution of a PSTN is simulated multiple times and the
duration of contingent activities is sampled as they are ex-
ecuted. Herein, the simulated execution uses dynamic con-
trollability technique to determine how it should adapt to
the sampled values of duration. The ratio of successful exe-
cutions corresponds to the Robustness value.

Similar to the likelihood of success, the risk of violat-
ing any temporal constraints in a PSTN can also be inter-
preted as a robustness metric. Approaches like risk-bounded
scheduling (Fang, Yu, and Williams 2014) guide their search
for a temporal plan based on a user-specified risk bound
(e.g., 5% risk). In (Santana et al. 2016), a risk-minimization

approach is used to generate a schedule under strong con-
trollability constraints, in which the risk is one of the com-
ponents of the optimization function. The minimal risk value
would indicate how robust the PSTN is.

It is worth mentioning the body of work on sensitiv-
ity analysis for scheduling (Stoskov 1991; Ali et al. 2003;
Hall and Posner 2004) that studies problem parameters vari-
ation (including task duration) and its impact on scheduling
performance (e.g., makespan, solvability). In (Stoskov 1991)
for instance, authors measure the maximum amount of pa-
rameters change that maintains schedule optimality. In this
paper we focus on the impact of temporal disturbance wrt
execution as opposed to scheduling performance.

The aforementioned metrics, success probabilities and
risk bounds, provide an intuitive way to evaluate if an STNU
or PSTN execution is likely to succeed and whether the en-
tire network is brittle to disturbance or not. However, it is
hard to determine potential sources of brittleness when those
metrics do not meet a desirable threshold. What activities in
particular are culminating in low robustness, and why is that
the case? What activities and temporal constraints are most
brittle to delays so that one might try to address specific is-
sues in the STNU or PSTN? In the next section we propose
a method to address these questions.

Task Network Brittleness Analysis

In this work, we represent uncertainty by associating a mean
(p) and a standard deviation, sigma (o), (e.g from a nor-
mal distribution) to every contingent activity a in the task
network. We called the set of contingent activities Ac and
the non-contingent/controllable activities Ar, where A =
AcUAgand A¢c = {a;(TC, D, pi,0)...a,{TC, D, u,0)}.

We propose a brittleness analysis approach for task net-
works with uncertainty in which we enumerate contingent
activities, from most brittle to least brittle, and inform the
causes of potentially undesirable brittleness levels. In a nut-
shell, we use a ceteris paribus approach (i.e. “all else un-
changed”), to analyze the temporal brittleness of each con-
tingent activity individually by exploring different distur-
bance scenarios and evaluating how interrelated an activity
brittleness is to other activities disturbances. We then over-
lay that information onto the task network to analyze why
certain activities are more brittle than others. We first intro-
duce the core analysis algorithm.

Ceteris Paribus Analysis

In the core of the brittleness analysis, we introduce a ceteris
paribus approach to measure the degree of disturbance (de-
viation to the mean) at which each target contingent activity
a € Ac makes the task network become dynamically un-
controllable (or strong controllable if that is the case) under
the STNU formalism. For each activity, we measure its max-
imum duration deviation from the mean, while fixing the un-
certainty (deviation) of all other remaining contingent activ-
ities to a certain level (called a ceteris paribus scenario).
Deviation here is related to a sigma multiplier that is used
to determine the lower and upper bounds of an activity’s
uncertain duration (i.e., a contingent edge in the STNU)

567

Algorithm 1: Ceteris Paribus Brittleness Analysis

Input : A Task Network 7'V, i.e. a set of activities
A = Ac U Ag and a plan time horizon H; and Fy,
used to set the uncertainty scenario during the
individual activity analysis
Output: A list of contingent activities ordered by their
corresponding z;*
multipliers < {};
//Step 1
2 % + computeOverall SigmaMultiplier(TN);
//Step 2
3y=z"x Fy;
4 fora; € Ac do
zZ
computeActivitySigmaMultiplier(a;,y, TN);
multipliers.append((as, zi"));
end
ordered_multiplier < order(multipliers) ;
return ordered_multiplier

—

//Sets fixed y multiplier

wn

e ® 9 &

around the mean. The maximum sigma multiplier of a con-
tingent activity a; that makes the network dynamically un-
controllable (u) is referred to z;', where the breaking un-
certain duration bounds for that particular activity would be
(tiiend — tistart) = [t — 2i* X 04, i + 2* X 0] in the
STNU for a particular ceteris paribus scenario. The intu-
ition here is: the smaller the z}, the more brittle the ac-
tivity is in the network. Note that if the mean and sigma
are associated to a normal distribution, the sigma multiplier
z{* is linked to the probability mass under the pdf within
[— 28 X 04, i + 22 X 0;]: the smaller that probability, the
more brittle is the activity. Herein, we use the sigma multi-
plier z;* as our central measure of brittleness and the means
to enumerate brittle activities. In what follows we describe
the proposed analysis algorithm to compute z;' for each tar-
get contingent activity.

Algorithm 1 is designed to order activities by their degree
of brittleness. It is composed of two main steps. In Step 1,
we detect the single overall sigma multiplier (applied to all
the contingent activities edges at once) that makes the net-
work T'N dynamically uncontrollable. That overall sigma
multiplier will be used in the second step to created specific
ceteris paribus scenarios when analyzing each individual ac-
tivity. In line 2, the function computeOverall Multiplier
translates our task network T'N to an STNU representation
and incrementally adds uncertainty around the mean p of
all activities duration by applying a single increasing overall
sigma multiplier x (0 < x < 00) to all contingent activi-
ties. At each increment of x we check if the resulting STNU
is dynamically controllable (Morris 2014). The (breaking)
overall sigma multiplier that makes 7'N uncontrollable is
set to be . An alternative to the aforementioned incremen-
tal approach is to use an exponential/doubling search (with
unbounded target value) to find =" (currently implemented
in this work). Figure 1 (a) illustrates the process of (a.1) in-
creasing/searching x and (a.2) hitting an uncontrollable state
in which one or many contingent activity duration bounds
violate the dynamic controllability constraint.

1) X X0y X X0y X X oy 1) 7, X 0y Yy Xa, yXoy 1) z"X 0y Y'X 0y YNX ay
| VAl !
e e 2N R oo AN
a, as .. ay a; as ay a; as . ay
2) xxa XX 0y ¥ xoy 2) #xa y X0, yxon 2) #xe yi'x o, YN X N
1 1 ! ! 1 1 1 1
a a, e ay a a, . ay a a, . ay
(a) (b) (c)

Figure 1: (a) Algorithm 1, Step 1 - Process to determine the overall sigma multiplier z* that makes the network uncontrollable:
a.1) represents the incremental/search process of applying sigma multiplier = to define duration lower and upper bounds to all
contingent activities; a.2) represents to point in which the task network becomes uncontrollable and therefore determining the
overall sigma multiplier . (b) Algorithm 1, Step 2 - Determines the sigma multiplier z}* for each target contingent activity
a; € Ac while applying a fixed sigma multiplier y to all other contingent activities a; (j # ¢): b.1) represents the search
process for the maximum sigma multiplier z;* for activity a;; b.2) represents the uncontrollability point in which z;* is found.
(¢) Algorithm 2’s Monte Carlo simulation process for each contingent activity a;: c.1) represents the search process for the
maximum sigma multiplier z;""" in simulation m; c¢.2) represents the uncontrollability point in which z;"™" is found.

The most important process of the Algorithm 1 occurs in
Step 2. Here we start by setting a fixed sigma multiplier y
0 <y < z%), line 3) that will be used to specify the ce-
teris paribus scenario (i.e., uncertainty level of all the other
contingent activities) when analyzing a particular contingent
activity a;. The algorithm input float F, is used to specify y
as a fraction of z* (0 < F, < 1). As we will see later, y = 0
(by F, = 0) is a special case of the analysis.

For each activity a; € Ac (line 4), we compute its
sigma multiplier z}* and append the pair (a;, z¥*). The func-
tion computeActivitySigmaMultiplier (line 5) starts by
first creating a STNU in which all other contingent activ-
ities a; € Ac(j # i) has its contingent duration set to
(tjend—tj start) = [—Y X0}, pj+yxo;]. We then search
for the maximum sigma multiplier z;* applied to a;’s du-
ration bounds that violates the dynamic controllability con-
straint, as illustrated in Figure 1 (b). The search for 2} can be
done in different ways. Similar to Step 1, one can incremen-
tally add uncertainty to activity a;’s duration by applying a
sigma multiplier z; until it hits the breaking point with z}".
Another approach would be to use a doubling search to find
the breaking point. A more elaborated approach would be to
use a relaxation approach, specifically the Conflict-Directed
Relaxation with Uncertainty (CDRU) algorithm (Cui et al.
2015) to solve a maximum delay problem over the STNU in
a specific way, in which the duration of activity a; is the only
relaxable constraint. The algorithm sets the upper bound of
the relaxable contingent duration to a large number and relax
that upper bound so that the network is dynamically control-
lable. For more details on the relaxation approach see (Cui
et al. 2015). Finally, every pair (a;, z}*) is stored and later or-
dered by the value z;* (line 8). The ordered list of contingent
activity is then returned.

A special case of the analysis in Algorithm 1 is when the
fixed sigma multiplier y = 0 in Step 2, meaning that all other
contingent activities a; have duration set to be exactly the
nominal case, (tj,nd — tj.tart) = (1, 1t;]. In that case, we
can determine the maximum temporal disturbance allowed

568

for each activity, which sets the upper bound of each 2}, i.e.
increased values of y can only decrease our brittleness met-
ric for each activity. Figure 2 (a) shows an example of rank-
ing of activity brittleness from one of the studied M2020
task networks. Here we use 1/z} values to make the brit-
tleness representation more intuitive: the higher 1/z", the
more brittle the activity is. The ranking can inform design-
ers or planners what activities are most brittle and which of
them might need further inspection if they do not meet a de-
sirable brittleness level. Note that the chart in Figure 2 (a)
can be mapped to maximum delays (2;* x ¢;) providing ac-
tual timing information.

It is worth noting that varying the fixed sigma multiplier y
can provide useful information about interrelated contingent
activities. If iterate y from O to z;* and apply Step 2 of our
algorithm, we can evaluate the gradual impact of other activ-
ities uncertainty to each activity a,. If the resulting values of
z;* do not change with y variation, then it shows that activity
a; is quite independent of other activities duration and uncer-
tainty (or their effect is insignificant). If z}* value do changes
with varying y, then q; is interrelated to other activities un-
certainty. For cases in which z* is significantly small, such
y varying analysis could be nevertheless uninformative. We
describe a complementary analysis in what follows that ex-
plores the domain space of y to better analyze interrelation
and brittleness in more diverse ceteris paribus scenarios.

Monte Carlo Simulation Analysis

Here we explore the impact of an activity’s brittleness level
given different random duration bounds applied to all oth-
ers contingent activities in the task network. Specifically, as
opposed to using fixed sigma multiplier y across all other
activities, we randomly select sigma multipliers y; for each
contingent activity a; when analysis activity a; (j #) to
create random ceteris paribus scenarios and explore the do-
main space of the uncertainty level in the whole task net-
work. In this work, we explore the range 0 < y; < W;
were W; is an arbitrary upper bound on the sigma multiplier

Algorithm 2: Ceteris Paribus Brittleness Analysis with
Monte Carlo Simulation

Input : A Task Network T'N, i.e. a set of activities
A = Ac U Apg and a plan time horizon H; a number
M of Monte Carlo simulations per contingent
activity; and a list W used to bound the sigma
multipliers when creating a random ceteris paribus
scenario
A mapping between contingent activities and a list of
values of z;* for each simulation
1 Z"«+{};//initializes the mapping
2 fora; € Ac do

Output:

3 Zi < {};//initializes the list of o
multipliers for a;
//Perform Monte Carlo simulations
4 for m from 1 to M do
5 Y™ « randomSelectY Multipliers(a;, W,TN);
6 2z
computeZ SigmaMultiplier(a;, Y™, TN);
7 Zi.append(z;"™);
8 end
9 | Z".append((ai,(Z"));
10 end
11 return Z“

assigned to define activity a;’s lower and upper bound con-
tingent duration in the STNU. A straightforward value for
W would be z (which requires first running the aforemen-
tioned ceteris paribus algorithm with the special case y = 0.
If normal distributions are associated to the contingent activ-
ities in the task network, then one could use values such as
W = 3, covering 99.7% of the possible values of duration
for activity a;, or W = 5 covering 99.9% of the cases.

We propose a Monte Carlo approach to the augment our
analysis and explore different ceteris paribus scenarios, rep-
resented in Algorithm 2. For each activity a;, we run M
Monte Carlo simulations in which we first randomly select
a set of sigma multipliers Y™™ (line 5), one per contingent
activity a; (j # 1), i.e. y;” where 0 < y}” < Wj;. Note
that one could run Algorithm 1 with y = 0 and use all of
some z;* for set list W. In addition to selecting Y™, func-
tion randomSelectY Multipliers maps TN to an STNU
by applying y; € Y™ to each activity a;’s duration bounds
and setting a; duration bounds to [1;, 14;] (no deviation). We
select Y such that the resulting STNU is dynamically con-
trollable (for example using a generate and test approach).

Given a scenario established by Y, the algorithm then
computes the specific z;"™ (line 6) for that scenario and
simulation m. Figure 1 (c) illustrates that process. The re-
sulting set of sigma multipliers Z;* represents activity a;’s
variation of the brittleness metric due to varying degrees of
uncertainty across the task network. Those sets are then ag-
gregated (line 9) to provide the result of the algorithm Z": a
mapping between contingent activity and the distribution of
its corresponding sigma multiplier.

The data points in Z“ can be plotted to a box-whisker
chart, Figure 2 (b) which illustrates how brittle each activ-
ity is with respect to the variation of the uncertainty level of
others activities. Herein, we can more clearly visualize how

569

dependent (large variation) or independent (no or insignifi-
cant variation) the activities are to others.

Mapping Brittleness to Task Network Structure

We implement a tool for representing the outputs of the pro-
posed analysis along side a graphical representation of the
temporal network (e.g., as a STNU or a PSTN). The objec-
tive is to help a designer to map brittleness to elements in
the network structure in order to identify brittleness sources.
In addition to the temporal constraints (edges), time points
representing the start and end times of activities, and means
and sigma, we provide the following information for each
activity a; in the task network:

1. Brittleness rank: activity’s rank in the brittleness scale,
where 1 is the most brittle. Here we use color code to
visually represent activity from most to least brittle;

2. Sigma multiplier: the 2 from Algorithm 1 (with y = 0)
and the mean, min, max values of z}' from Algorithm 2.

3. Delay": refers to o; X z;' representing the max delay of
the activity (using z;* from Algorithm 1 with y = 0) in
which the network becomes dynamically uncontrollable;

Specified execution time window: the time window
specified in the input T'N based on the earliest start time
and cutoff time. This is to contrast with the inferred time
window below.

5. Inferred execution time window (TwL'/*"): here we

run Floyd-Warshall’s all-pairs shortest path algorithm to
infer the actual available time window for execution due
to other temporal constraints. This relates to the flexibility
of the activity.

6. Inferred start time window: the length of time window
in which we can start the activity. This item also relates to
the flexibility of the activity start flexn (t;_start)

7. Dependencies: we present how many activities need to
be scheduled/executed before activity a;, as well as how
many activities need to be scheduled/executed after the
activity. This item provides some some notion on where
this activity is on the dependency chain, if any.

By visual inspection or structure analysis, designers and
planners can study the causes of brittleness given the pa-
rameters above while tracing the associated temporal con-
straints. In the next section we describe how the above added
information support identifying the causes on brittleness and
the common reasons to why an activity is highly brittle in the
set of studied M2020 task networks.

Experimental Results

In this study, we analyze a set of task networks from Mars
2020 sol types and run the proposed ceteris paribus analysis
and the Monte Carlo approach. By using the analysis, map-
ping and inspection tool we draw observations on the typical
characteristics found with respect to variations on activity’s
uncertain duration and the corresponding brittleness levels
under the dynamic controllability constraint.

Task Network || # Act | #Dep | #Nodes | #Edges | a¥ =
TN 0 33 27 69 193 0.095 | 1336.77
TN 1 40 43 83 237 0.045 | 1116.22
N 2 28 25 59 162 0.060 | 1767.85
N 3 18 21 39 104 0.030 | 3075.725
TN 4 42 42 87 251 0.150 | 1075.25
TN 5 42 42 87 251 0.135 | 738.78
TN 6 35 42 73 200 0.030 | 5239.57
N7 46 55 95 279 0.030 | 980.01
TN 8 20 18 43 115 0.135 | 896.61

Table 1: Studied M2020 sol types task networks with their
respective number of activities (# Act), total number of ac-
tivity dependencies (# Dep), the number of nodes and edges
in the corresponding STNU, the resulting overall sigma

multiplier (z}') and the metric for the least brittle activity
=0
(Ziom

i,max

) in the ceteris paribus analysis.

Setup

We run the brittleness analysis using a set of nine M2020
sol type task networks. These networks are representative of
what is currently being investigated and applied to develop
an onboard scheduler for the M2020 rover (Chi et al. 2018).
Table 1 shows some of the main properties of each task net-
work, including the number of activities and dependencies,
as well as the resulting number of nodes and edges when
translating it to a STNU for controllability check. Due to the
fact that the M2020 rover is not yet in operations, accurate
models of activity duration variance are not yet available.
For the purpose of this study and to illustrate the benefits of
the analysis, we use estimate of activities duration as their
mean value and select a sigma for each activity randomly as
a fraction of the mean, i.e. 0; = r; X pu; where 0 < r; < 1.

For each task network (TN [through 8), we perform the
following: 1) run Algorithm 1 in the special case y = 0
to identify the upper bound of z“¥= and plot the brittle-
ness ranking; 2) run Algorithm 2 to analyze the brittleness
metric value variation in the Monte Carlo approach, where
we set 20 simulation per activity a; (i.e., M = 20); and 3)
we use the mapping tool to generate graphical representa-
tion (STNU-like) of the task network with the added layer
from the brittleness analysis data. For STNU controllability
checks in both Algorithms 1 and 2 we used the open-source
implementation derived from (Cui et al. 2015).!

Given that the analysis is meant to be an offline process,
runtime analysis of the algorithms is not the focus on this pa-
per. As areference, Algorithm 1 usually runs in about 2 min-
utes in a Ubuntu 16.04 Virtual Machine, 12GB Memory, 3.1
GHz Intel Core i7. Algorithm 2 varies significantly with the
number of Monte Carlo simulations and the selected method
to chose dynamically controllable scenarios Y™ (line 5).

Results

Table 1 shows the overall sigma multiplier x3* for each task
network from the ceteris paribus analysis, specifically from
Step 1 of Algorithm 1. The table also presents the max-
imum values of the target sigma multiplier Y= in the

[

'Conflict-Directed Relaxation under Uncertainty (CDRU).
https://github.com/yu-peng/cdru

570

y = 0 case, i.e., the least brittle activity value, to illustrate

the large range of brittleness in the set. The minimum values
of z?"y:o (most brittle activities) matches the value of z!
provided in the table, except for TN 7 where 247" = 0.095
in showing that in this case the most brittle activity is sensi-

tive to other activities uncertainty with modest variations.

These results shows a brittle set of task networks, given
the low sigma multipliers x;', that is: with a small variation
of one key activity’s duration the task network becomes dy-
namically uncontrollable. Figure 2 (a) and (c) for example
illustrate exactly which activity is the fragile execution ele-
ment in TN 2 and TN 7, respectively. In TN 2, Activity 9 is
the most brittle, and largely more brittle than the other activ-
ities. TN 7 shows an interesting case in which there is a clear
highly brittle activity, Activity 8, but several other activities
are significantly brittle due to a more temporally constrained
network with less room for variation in several points.

The results from the Monte Carlo analysis and the map-
ping approach show two main sources of temporal brittle-
ness in the studied set of M2020 task networks, which falls
into two cases: Case I represents brittleness due to a tight
user-specified execution window; and Case 2 represents brit-
tleness due to a dependency chain. Activities in case 1 would
usually have no (or insignificant) variation in the Monte
Carlo analysis. That can be also be inspected in the mapping
tool where it would have no temporal dependency to other
activities, but a tight window between the earliest start time
and the latest end time. Case 2 is manifested by variations to
the brittleness value in the Monte Carlo approach and clear
temporal/ordering dependencies in the graph representation.
In what follows we use task network TN 2 as our represen-
tative example since it covers the two aforementioned cases.

The brittleness of Activity 9 — a Long Drive activity — in
Figure 2 (a) is primarily attributed to its tight execution win-
dow compared to its large nominal duration (Case I). Each
activity may have a cutoff time to ensure that the activity
does not interfere with another higher priority activity. If the
activity runs past its cutoff time then it is aborted and the ac-
tivity fails to be scheduled. Even though the long drive has
no dependencies or resource contention with any other activ-
ity, its nominal duration is 13044 sec (3 hr, 37 min) while the
difference between its earliest allowed start time and its cut-
off time is only slightly longer at 13563 sec (3 hr, 46 min).
Then, assuming the activity starts as early as it can, if it runs
longer than expected by even 9 minutes, it will violate its
cutoff time and fail to be scheduled. Due to the lack of flex-
ibility given by its execution window, even a small fluctua-
tion from its nominal duration will result in an inconsistent
schedule. Figure 2 (b) shows the long drive activity with no
brittleness value variation in the Monte Carlo analysis, while
Figure 3 (a) shows the portion of the STNU-like graph with
the added analysis results and the key temporal constraints
that represent the tight execution window case.

The most common example of an activity that is tied to
a tight execution window in our study is one which has a
lighting requirement from science which translates into a
tight execution window. Another case would be cutoff times
for activities (at cutoff time an activity would be aborted to

(a). (b) ~ ()
...
o 3 5 W
- | £ £
g T 2
5 s E oI s
8 @ 3
[e =
[I o[
SO D O BB A DR D & O b pBPDS PN AA LB ERED D6 B OO EN SR b
R A AR AN A A S R N S e e A A e
ERSE RO R B Y N R N D P R
R FR R O r e R PO F R TR iR W pr R e

Figure 2: (a) Ranking of brittle activities from TN 2. Each activity a, has a corresponding sigma multiplier z;* that represents
the temporal deviation bounds in which the network becomes dynamically uncontrollable. A fixed sigma multiplier y = 0 is
applied to all other contingent activities. The chart shows value of 1/z* for each activity. (b) Variation of sigma multipliers Z*
of each contingent activity a; in the Monte Carlo approach from TN 2. (¢) Ranking of brittle activities for TN 7.

(a)

[0, 5265

Activity 23 Activity 26

Activity 24

Activity 20 Activity 22 Activity 25 Activity 21

llllll

Wi, 1685) Wi 1615

ank:
elay: 71
L Wit ke frociee
’[o, 4544] /[0‘ 4544] /[1550‘ 5265] /[1850. 5265] /[1850‘ 5265] /[qaso, 5265]

Figure 3: Brittleness due to (a) tight user-specified execution
window and (b) to dependencies in TN 2.

prevent interference with a later, high priority activity). An
example of this would be a science activity cutoff to ensure
non interference with a UHF pass — an activity which allows
critical data to be sent to and from Earth and is constrained to
start only at one particular time when an orbiter is overhead.
We expect more illumination requirements from scientists in
future sol types which would further constrain the execution
windows, resulting in more cases such as this.

We also examine 7 activities in the sol type TN 2 (Figure 3
(b)) that cannot occur concurrently due to hardware resource
contention (all use the Remote Sensing Mast (RSM)), which
causes brittleness. The first three MastcamZ activities (Ac-
tivities 23, 24 and 20) are imaging activities. These activities
have execution windows that overlap with those of the next
four activities, which all use the Navcam (cameras) in addi-
tion to the RSM. Of these next four activities, the first two
create atmospheric monitoring movies (Activities 26 and 22)
while the second two (Activities 25 and 21) generate movies
of dust devil activity. These four activities have the same ex-
ecution window and must all end by the same time and also
share part of their execution windows with the previous three
activities. Because all of these activities use the same hard-
ware and have highly overlapping execution windows, they
must be placed sequentially. As a result, they become fairly
constrained in where they can be scheduled, making the risk
of failure if these activities run long quite high (Case 2).

571

Although the four activities have the same nominal du-
ration, Activity 25 has a larger sigma (uncertainty) than the
others and, therefore, is the most brittle of the four. Activity
21 on the other hand has less uncertainty and is lower in the
rank, but the variations in the Monte Carlo simulations as
significant as the other three activities in that chain.

Understanding which activities are more brittle and why
has important use cases. For example, such analysis can as-
sist scientists in pinpointing activities that have a high risk
of failure and help them understand which constraints might
need to be reassessed, whether they be temporal constraints
or dependencies. It could also be the case that certain activ-
ity duration estimates and/or standard deviations have to be
revisited or redesigned (e.g., to reduce uncertainty, sigma).
If a more brittle activity was not expected to have high risk
of failure, then such analysis can help scientists understand
how to reconstruct the plan so that that it is not the case.

Conclusion

In this paper we presented a new approach for measuring and
analyzing the temporal brittleness of a temporal plan and ap-
plication to planetary rovers. We introduced a new metric to
measure brittleness of activities in the plan and algorithms
to help designers identify the most critical activities that vio-
lated the dynamic controllability constraint with small varia-
tions to their duration. This analysis can be overlapped onto
a STNU representation of the plan to augment the under-
standing of the sources of brittleness and the temporal con-
straints associated. We showed results from a selected set of
Mars 2020 planetary rover task networks in which two gen-
eral cases for activity brittleness emerged, mapping to differ-
ent ways to address them. We advocate that identifying such
key brittle activities is paramount in planetary rover where
large uncertainty exists in the environment.

Future work includes exploring constraint relaxation
mechanisms (Yu, Fang, and Williams 2015; Michel and
Hentenryck 2004) to guide designers through the process of
reducing a task network brittleness to an acceptable level, as
well as studying the brittleness metric in the PSTN realm.

Acknowledgments

The research was carried out at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.
The project was funded through the NSTA Advanced Con-
cept program. The authors would like to thank Dr. Peng Yu
for the discussions on the CDRU system, and the reviewers
for the valuable feedback and suggestions.

References

Ali, S.; Maciejewski, A. A.; Siegel, H. J.; and Kim, J.-K.
2003. Definition of robustness metric for resource alloca-
tion. In Proc. of the 17th International Parallel and Dis-
tributed Processing Symposium (IPDPS). France: IEEE.

Brooks, J.; Reed, E.; Gruver, A.; and Boerkoel, J. C. 2015.
Robustness in probabilistic temporal planning. In Proc. of
the 29th AAAI Conf. on Artificial Intelligence, 3239-3246.

Cesta, A.; Oddi, A.; and Smith, S. F. 1998. Profile-based
algorithms to solve multiple capacitated metric scheduling
problems. In Proc. of the 4th International Conference on
Artificial Intelligence Planning Systems (AIPS), 214-223.

Chi, W.; Chien, S.; Agrawal, J.; Rabideau, G.; Benowitz, E.;
Gaines, D.; Fosse, E.; Kuhn, S.; and Biehl, J. 2018. Embed-
ding a scheduler in execution for a planetary rover. In Proc.

of the 28th International Conference on Automated Planning
and Scheduling (ICAPS).

Cui, J.; Yu, P; Fang, C.; Haslum, P.; and Williams, B. C.
2015. Optimising bounds in simple temporal networks with
uncertainty under dynamic controllability constraints. In
Proc. of the 25th International Conference on Automated
Planning and Scheduling (ICAPS), 52—60.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1-3):61-95.

Fang, C.; Yu, P.; and Williams, B. C. 2014. Chance-
constrained probabilistic simple temporal problems. In
Proc. of the 28th AAAI Conf. on Artificial Intelligence,
2264-2270.

Floyd, R. W. 1962. Algorithm 97: Shortest path. Commun.
ACM 5(6):345.

Frank, J. 2018. On controllability of temporal networks: A
survey and roadmap. In International Conference on Auto-
mated Planning and Scheduling (ICAPS) Workshop on Inte-
grated Planning, Acting and Execution (IntEx), 19-23.

Gaines, D.; Doran, G.; Justice, H.; Rabideau, G.; Schaffer,
S.; Verma, V.; Wagstaff, K.; Vasavada, V.; Huffman, W.; An-
derson, R.; Mackey, R.; and Estlin, T. 2016. Productivity
challenges for mars rover operations: A case study of mars
science laboratory operations. Technical Report D-97908,
Jet Propulsion Laboratory.

Hall, N. G., and Posner, M. E. 2004. Sensitivity analysis for
scheduling problems. Journal of Scheduling 7(1):49-83.

Huang, A.; Lloyd, L.; Omar, M.; and Boerkoel, J. C. 2018.
New perspectives on flexibility in simple temporal planning.

In Proc. of the 28th International Conference on Automated
Planning and Scheduling (ICAPS), 123-131.

572

Jet Propulsion Laboratory. 2018. Mars 2020 rover mission.
https://mars.nasa.gov/mars2020. Accessed: 2019-03-04.

Lee, J. Y.; Ojha, V.; and Boerkoel, J. C. 2019. Measuring
and optimizing durability against scheduling disturbances.
In Proc. of the 29th International Conference on Automated
Planning and Scheduling (ICAPS).

Lund, K.; Dietrich, S.; Chow, S.; and Boerkoel, J. C. 2017.
Robust execution of probabilistic temporal plans. In Proc. of
the 21st AAAI Conf. on Artificial Intelligence, 3597-3604.

Michel, L., and Hentenryck, P. V. 2004. Iterative relaxations
for iterative flattening in cumulative scheduling. In Proc. of

the 14th International Conference on Automated Planning
and Scheduling (ICAPS), 200-208.

Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In Proc. of
the 17th International Joint Conference on Artificial Intel-
ligence (IJCAI) - Volume 1, 494-499. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.

Morris, P. 2014. Dynamic controllability and dispatchability
relationships. In International Conference on Al and OR
Techniques in Constraint Programming for Combinatorial
Optimization Problems CPAIOR, volume 8451 of Lecture
Notes in Computer Science, 464—479. Springer.

Rabideau, G., and Benowitz, E. 2017. Prototyping an on-
board scheduler for the mars 2020 rover. In International
Workshop on Planning and Scheduling for Space (IWPSS).

Saint-Guillain, M. 2019. Robust operations management
on mars. In Proc. of the 29th International Conference on
Automated Planning and Scheduling (ICAPS).

Santana, P.; Vaquero, T.; Toledo, C.; Wang, A.; Fang, C.; and
Williams, B. 2016. Paris: A polynomial-time, risk-sensitive
scheduling algorithm for probabilistic simple temporal net-
works with uncertainty. In Proc. of the 26th International
Conference on Automated Planning and Scheduling.

Stoskov, Y. 1991. Stability of an optimal schedule. Euro-
pean Journal of Operational Research 55(1):91-102.

Tsamardinos, I. 2002. A probabilistic approach to robust
execution of temporal plans with uncertainty. In Vlahavas,
I. P, and Spyropoulos, C. D., eds., Methods and Applica-
tions of Artificial Intelligence, 97-108. Berlin, Heidelberg:
Springer Berlin Heidelberg.

Vidal, T., and Fargier, H. 1999. Handling contingency in
temporal constraint networks: from consistency to control-
labilities. Journal of Experimental and Theoretical Artificial
Intelligence 11:23-45.

Vidal, T., and Ghallab, M. 1996. Dealing with uncertain
durations in temporal constraint networks dedicated to plan-
ning. In Wahlster, W., ed., European Conference on Artifi-
cial Intelligence (ECAI), 48-54.

Wilson, M.; Klos, T.; Witteveen, C.; and Huisman, B. 2014.
Flexibility and decoupling in simple temporal networks. Ar-
tificial Intelligence 214:26-44.

Yu, P;; Fang, C.; and Williams, B. 2015. Resolving over-
constrained probabilistic temporal problems through chance
constraint relaxation. In Proc. of the 29th AAAI Conference
on Artificial Intelligence, 3425-3431.

