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Abstract

We deployed three new data analysis algorithms onboard the
Earth Observing 1 (EO-1) spacecraft and evaluated their per-
formance over a five-month period. The algorithms include
two cloud detectors and an unsupervised novelty detector.
Together they provide the first demonstration of ensemble,
Bayesian, and novelty detection methods onboard EO-1. On-
board performance on a diverse collection of targets was sim-
ilar to or better than that observed in ground testing. These
algorithms can be used to benefit future missions by aiding
onboard decisions about data prioritization to optimize the
use of limited downlink as well as potentially to enable au-
tonomous response actions.

Introduction
The ability of modern remote sensing instruments to collect
data often exceeds the bandwidth available for spacecraft to
downlink the data to Earth. The communications link there-
fore becomes a “science bottleneck” in that it dictates how
much information can be received. Traditional mission op-
erations tailor their plans for data acquisition to the expected
data volume available; in many cases this means a severe re-
duction in scope, resolution, or coverage.

Recent advances in spacecraft autonomy enable a more
powerful and productive approach in which instruments col-
lect more data than can be transmitted and employ onboard
data analysis algorithms to identify valuable content within
the data and prioritize it accordingly. This approach allevi-
ates the bottleneck imposed by limited bandwidth and opens
up the possibility of capturing rare phenomena whose occur-
rence cannot be predicted in advance.

The Earth Observing 1 (EO-1) spacecraft, in operation
since 2000, has served as a pathfinder for onboard spacecraft
autonomy. EO-1’s primary science instrument is Hyperion,
an imaging spectrometer that collects data at high spectral
and spatial resolution. Over the years, a series of software
upgrades have progressively increased EO-1’s ability to an-
alyze Hyperion data as it is collected to detect events of in-
terest such as floods (Chien et al. 2013a) or volcanic erup-
tions (Davies et al. 2013). These detections can be used to
prioritize data for downlink, add follow-up observations on
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the next overflight, or to alert other spacecraft that can col-
lect their own observations.

Our goal is to use state of the art machine learning meth-
ods to enable onboard (in situ) spacecraft data analysis and
optimize the use of limited downlink. This paper reports
on the deployment of three new onboard data analysis mod-
ules for the EO-1 spacecraft. They employ machine learn-
ing to achieve cloud classification/filtering and novelty de-
tection. In addition, these methods must operate success-
fully in a very constrained onboard operating environment
(limited CPU, limited memory, and limited runtime) while
minimizing risk and impact to the spacecraft as a whole.

Related Work
Previous work in onboard spacecraft autonomy includes
methods that seek to (1) reduce (or make the best use of)
data volume or (2) detect and respond to events of interest.

A reduction in data volume enables the collection of more
data than can be transmitted. Autonomous data analysis
methods complement standard data compression methods
by applying mission-specific criteria to assess the scientific
content of the data and prioritize it accordingly. For ex-
ample, the Mars Exploration Rovers used a system called
Watch to collect images for hours and only downlink those
that contained active dust devils (Chien et al. 2008). The
Intelligent Payload EXperiment (IPEX) CubeSat employed
decision forests (Altinok et al. 2015) to assess image quality
(e.g., to identify and exclude cloudy regions) prior to down-
link. We also developed (but did not fly) onboard methods
for summary product generation (thermal anomaly detec-
tion, polar cap edge tracking, and aerosol opacity estima-
tion) for the Mars Odyssey orbiter (Castano et al. 2007).

Spacecraft have also used onboard data analysis to in-
form decisions about follow-up actions. For example, the
Mars Science Laboratory rover now selects its own rock tar-
gets and fires the ChemCam laser to collect compositional
data (Estlin et al. 2014). In Earth orbit, Swift MIDEX de-
tects gamma-ray bursts and automatically slews the space-
craft to point additional telescopes at the source (Barthelmy
et al. 2005). Spacecraft can even collaborate without hu-
man intervention: it is possible to detect floods in MODIS
data and send an alert to the EO-1 spacecraft to automati-
cally collect its own observation of the same area (Chien et
al. 2013a).
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Onboard Data Analysis for EO-1
Software onboard the EO-1 spacecraft must operate under
significant constraints in terms of CPU cycles and memory
available. The Mongoose M5 processor runs at just 12 MHz
(4 MIPS), and the available RAM is only 128 MB. In ad-
dition, no dynamic memory allocation is permitted, and be-
cause there is no FPU, floating point operations must be em-
ulated and are therefore extremely expensive.

There are also limits on how much data can be accessed
onboard. Although the Hyperion instrument collects data at
220 wavelength bands, onboard software is permitted access
to only a small subset of the bands, and only for a sub-region
of the full image, which is 256 pixels wide and of variable
length (tailored to the desired observation; typically 1024
pixels) (Chien et al. 2013b).

EO-1 has a history of performing onboard science-based
data analysis including thermal anomaly detection to iden-
tify volcanic eruptions (Davies et al. 2013), flood detec-
tion (Ip et al. 2006), a support vector machine (SVM) to
classify cryosphere features (Castano et al. 2006), a dif-
ferent SVM trained to detect tiny traces of sulfur deposits
on glaciers as a possible analog for biosignatures on Eu-
ropa (Mandrake et al. 2012), and spectral unmixing to clas-
sify surface materials (Thompson et al. 2013).

Onboard Data Analysis Algorithms
We implemented three new data analysis algorithms for Hy-
perion that include the first ensemble method and the first
Bayesian technique to be used onboard EO-1. The first
two methods address the task of identifying cloudy regions
within a Hyperion image. The last algorithm identifies lo-
cally anomalous regions within an image that may contain
new discoveries or features of interest. Each algorithm was
allowed to select three Hyperion bands for its use. In all
cases, the observed radiance values were converted to re-
flectance prior to analysis.

Cloud Detection with a Random Decision Forest
Hyperion is generally used to observe features of interest
on the surface of the Earth. Intervening clouds obscure the
surface and render the corresponding spectral information
unusable. Detecting cloudy pixels onboard the spacecraft
enables intelligent data prioritization or filtering to make the
best use of limited downlink.

We trained a semantic texton forest (STF) to classify Hy-
perion pixels as “clear” or “cloudy.” The STF is a ran-
dom decision forest (RDF) that is tailored for analyzing im-
ages (Shotton, Johnson, and Cipolla 2008). It uses a diverse
ensemble of decision trees, each trained on a slightly dif-
ferent subset of the data. Each tree classifies a given pixel
by applying a series of tests to the pixel and its local neigh-
borhood (window). The training process identifies the best
test to use at each node in each tree to achieve the highest
performance.

We started with an RDF implementation called Texture-
Cam (Thompson et al. 2012; Wagstaff et al. 2013) that we
previously demonstrated onboard the Earth-orbiting IPEX

CubeSat (Altinok et al. 2015; Chien et al. 2016). We devel-
oped a static implementation of the TextureCam C++ code
with serialized data structures that did not require any dy-
namic memory allocation. Once the RDF classification code
was uploaded to EO-1, new decision forests could be trained
on the ground and sent up to provide new capabilities with-
out any code modifications.

The RDF cloud classifier was trained on four hand-
labeled images in which individual pixels were marked
“clear”, “cloudy”, or left unlabeled. These images were
chosen to contain a variety of cumulus and stratus clouds,
over land and water. They included observations from 2013
to 2016. The RDF used Hyperion bands at 478, 529, and
651 nm, which roughly correspond to blue, green, and red
wavelengths. We performed a 4-fold image-based cross-
validation study to select the best parameters for the RDF.
The best-performing model, given the memory available,
was a forest with two trees, nine nodes per tree, and an anal-
ysis window size of 5 x 5 pixels. This model achieved an
average held-out precision of 94.9% and recall of 77.2%.
Since cloud classifications could potentially be used to re-
duce priority or omit data segments, precision is much more
important than recall.

Cloud Detection with Bayesian Thresholding
Our second algorithm (BT) also classifies pixels as “clear”
or “cloudy” using a different approach to the problem.
Bayesian thresholding exploits the natural division between
dark surface materials and bright cloudy regions at particu-
lar wavelengths. The BT algorithm analyzes labeled train-
ing data and identifies the optimal thresholds for each band
to separate the classes of interest. While the RDF method
examines a window of values around the pixel to be classi-
fied, BT classifies each pixel independently. This approach
was previously employed to analyze data collected by the
AVIRIS-C airborne sensor (Thompson et al. 2014). For EO-
1, BT used Hyperion bands at 447, 1245, and 1658 nm to
span the range from blue to short-wave infrared. The BT al-
gorithm was ported from Matlab to C++, and the output data
format was updated to provide a cloud mask output.

The BT model was trained using an updated set of 11
hand-labeled images from late 2016 and early 2017, just
prior to deployment of the classifier. The model achieved
an average held-out precision of 90.6% and recall of 65.8%.
For flight, we increased the selected thresholds slightly to
further emphasize precision.

Salience-based Novelty Detection
Supervised machine learning methods are useful when we
know in advance which features are of interest. However,
when exploring a new environment, it is equally important to
be able to detect the unexpected. We previously developed
an algorithm that computes the salience of image content,
so that highly unusual or anomalous regions can be assigned
a high priority for downlink (Wagstaff et al. 2012). We im-
plemented it for use on IPEX between 2013 and 2015; to
our knowledge, this was the first use of salience estimation
onboard a spacecraft. On IPEX, the salience algorithm de-
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Figure 1: EO-1 onboard cloud detection for a scene in
Michigan: RGB (left), RDF clouds (middle), and BT clouds
(right).

tected several small features of interest such as small lakes
in Tibet, despite no prior training (Chien et al. 2016).

Salience is an unsupervised algorithm that assigns a score
to each pixel that captures how anomalous it is within its
local context. The salience S of pixel p is computed with
respect to the histogram Pw of intensity values in the sur-
rounding window w:

S(p, w) =
1

M

∑
i

|p− i|Pw(i) (1)

where M is a normalization factor that is the maximum
salience possible given the window histogram and size:
M = N(N − 1)

∑
i Pw(i).

We adapted the salience algorithm for use on EO-1 in
two ways. First, we improved efficiency by computing
the histogram incrementally as the analysis window slides
across the image, instead of computing it from scratch for
each window. Second, we extended salience to operate on
multi-wavelength observations by computing salience inde-
pendently for each band and then reporting the maximum
salience across all bands. We used the same RGB bands as
the RDF classifier and a window size of 31, which is sensi-
tive to medium-scale features.

Results
Onboard operation of the RDF, BT, and salience algorithms
occurred from November 2016 through March 2017. We
chose a range of targets for testing the algorithms, including
desert, mountain, lake, and urban environments.

The RDF cloud classifier was run a total of 22 times.
Three results were lost due to data gaps or corruption. In
the remaining 19 images, clouds were correctly detected in
six of eight cloudy scenes. The two missed scenes had very
thin clouds or low illumination. In two other scenes, clouds
were falsely detected due to bright surface deposits or snow.

The BT cloud classifier was run only seven times due to
its later deployment. It correctly detected clouds in two of
three cloudy scenes; the missed scene’s clouds were rejected
as too thin. There were no false detections. Figure 1 shows

Figure 2: EO-1 onboard novelty detection for a volcano in
Chile (top) and buildings in Thailand (bottom): RGB (left)
and salience heat map (right).

results for both classifiers on the same cloudy scene. They
largely agree, although the BT classifier is more conserva-
tive, as designed.

The salience algorithm also generated a total of 19 re-
sults. Regions with high salience scores were diverse, in-
cluding mountains, channels, streambeds, buildings, and
cloud edges (see Figure 2).

The BT algorithm was the fastest to run; it required 18
minutes to process a 256 x 1024 3-band Hyperion image.
The RDF time was variable because the decision forest fol-
lows different paths depending on the data content; the aver-
age was 52 minutes. The salience algorithm had the longest
average runtime (160 minutes). In the future we would
recommend using the single-band version of the algorithm,
which would require only 1/3 of the observed runtime (∼53
minutes). We did not observe significant differences when
using one versus three bands.

Conclusions
The upload of three new data analysis algorithms to the EO-
1 spacecraft provides a critical step in their maturation and
potential use by future missions. Detecting and screening
clouds can yield major benefits for Earth-observing instru-
ments by reducing data volume. When data analysis is used
to inform decisions about data prioritization and potentially
deletion, the results must be reliable and conservative. Pre-
cision is generally more important than recall; it is better to
mistakenly preserve a cloud than to mistakenly omit good
data from the downlink.

While we can anticipate the need to classify some fea-
tures such as clouds or floods or volcanic eruptions, there
will always be a need for the ability to also detect the un-
known. This is particularly vital for missions to more re-
mote and less explored destinations, such as comets, ocean
worlds, and distant moons. A complete onboard analysis
system will need to integrate the detections and decisions
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of multiple analysis modules to inform final decisions about
data prioritization and, potentially, active responses.

Future spacecraft will have progressively more powerful
flight computers. The Mars rovers have exceeded EO-1’s 12
MHz by an order of magnitude, and we expect this trend to
continue. Greater computing resources open up the possibil-
ity of using larger, more complex and accurate models.
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